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1 Virtual Element Method for Poisson problem

1.1 Poisson equation
In this section a general Poisson equation is considered as
Au+f=0 in
U= ¢gp on I'p (1)

Ot = gn on I'y

where Q2 € R is a polygonal domain and f € L?(2). The variational formulation reads

{ find weV:=HQ) such that )

a(u,v) = (f,v) :=L(v) YveV

where

a(u,v) = /QVu - VodQ (3)

Let {74}, be a sequence of decompositions of 2 into K, and let &, be the set of edges
e of T,. Then the discrete problem becomes

find wuy, € V), such that
{ (4)

ah(uh,vh) = (fh,vh> Yo, eV, CV

1.2 Virtual element function spaces

Consider the first virtual element space
Vi(K):={ve H'(K): Av ePy»(K) in K, v|ox =Br(0K)} (5)
where P is a polynomial with the highest order not exceeding k,
Br(0K) :={v e C(OK) : v, € Pr(e), eCOK} (6)

It is not difficult to find that B, (0K) is a linear space of dimension n+n(k —1) = nk, n
is the number of sides of the polygon. Besides, the dimension of Vj(K) is
k(k—1 k(k—1
where the last term corresponds to the dimension of polynomials of degree < k —2 in two
dimensions.
In Vi (K), the degrees of freedom are selected as
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e Vi (K): the values of v, at the vertices;
o & (K): for k > 1, the values of v, at k — 1 uniformly spaced points on each edge e;

e Pr(K): for k > 1, the moments

1
W/ UhmadQ, Vm S Mk_2<K)
K

In the last item, the Mj_» is the set of (k* — k)/2 monomials

({552 e

where h is the diameter of K, @k is the centroid of K, |K| is the area of the polygonal
element. The above variables can be calculated by

n
E TiYi+1 — Ti+1Yi
i=1

K| = (9)

1
2

Besides, the centroid (zg,yx) can be calculated by

1 n
= W Z(xz + Ti1) (Tiliy1 — Tiv1¥i) (10)
i=1
1 n
e 6| Z(yz + Yit1) (TiYir1 — Tiv1¥i) (11)
=1

Conventionally, M, = 0 for r < —1. For the multi-index s € N¢, we follow the usual
notation
@t =2 a% S| = s 4+ 5g (12)

Note that Mj_5 is a basis for Pj_o(K).

1.3 Projection operator and stability item

The projection operator
I Vi(K) — Py(K) (13)

represents the projection of any function in the local virtual element space Vj,(K) onto the
subspace of linear polynomials. This projection is defined for v € Vi (K') by the conditions

{ o (11 v, p) = a®(v,p), Vq € Pi(K)

Hka:T)

(14)

where

T = %thwn (15)
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denotes the average value of wy, at the vertices for k = 1. At the point, choosing aX (u,v) =
a® (I u, 11X v) would ensure the consistency property

ay, (p,vn) = a™ (p, vp) (16)

Besides the consistency property, the stability property should also be satified, which
described as

Yo, € Vi(K),  a.a®™(vn,vp) < ap (vp, o) < a*a” (v, vp) (17)

where a, and o are two different constants. In order to satified the stability property,
let S (u,v) be any symmetric positive definite bilinear form to be chosen to verify

coa® (v,v) < S5 (v,v) < e1a™(v,v) Vv € Vi(K) with Ifv =0 (18)
for some positive constants cg and ¢;. Then set
ap (u,v) = o (g u, 1) + S (u — w0 — I v)  Vu,v € VHK) (19)

casy to find that the bilinear form Eq.(19) satifies the consistency property Eq.(16) and
the stability property Eq.(17).

1.4 Local Stiffness Matrix

ap (u,v) = o (IFu, I v) + S5 (u — I u, v — ) (20)
The basis functions ¢; € Vi(K) are defined as usual as the canonical basis functions
Xi(¢;) = dofy(¢;) = bij, 4,5 =1,---, Nk (21)

so that a Lagrange-type interpolation identity can be obtained as
Nk
up = Zdofi(vh)@ for all v, € Vi(K) (22)
i=1
where Ng := dimVj(K).
Based on the item discussed in section 1.3, the stiffness matrix is given by
ap (u,v) = o (IFu, I v) + S5 (u — I u, v — I ) (23)

or

af(u,v):/KV(Hfu)~V(va) dQ + S (u — I u, v — I ) (24)

Considering the interpolation in Eq.(22), the form of the local stiffness matrix can be
obtained as

Kij(K) = a® (I i, IIE ¢5) + S™ (¢ — 115 ¢y, ¢ — 115 ;) (25)
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1.4.1 Ritz projection

Since My, (K) is a basis for Px(K) ,the projection II£¢; in Eq.(25) can be expanded in

the basis of P(K) or in that of V;X:

Np N
HkKCbi = Z Ao, iMo = Z $,i9;
a=1 j=1
The equation can be written in the matrix form as
[T 1, T g, - -+ TS o | = TIE @7 = mT IO, = T TIS
where TIE is the Ritz projection, and

(H’g‘)za = Qjq, (Hf) = 8

ij
Besides, Eq.(14) can be written as
a™ (I s, ma) = a™ (¢i,ma)
(s
or in matrix form as
{aK (qu’),mT) =a® (Hf*m,mT) =a” (q’),mT)
IEPT = 7T

) izla"'vNKaazlv"'yNP

Let
G =d* (m,mT) = / Vm - Vm!’dQ
K

B:dﬂmﬁﬂ:/Vmww%Q
K

with the matrix form

(le, le) (le, Vmg) tee (le, VmN[P)
G — (Vmg, le) (V’Ing, VmQ) cee (Vmg, VTTLNIP)
(va[P, le) (vaP, Vmg) v (VmNP, VmNP)
(Vm1, V1) (Vmy, V) -+ (Vmy, Von,)
B (Vmy, V1) (Vmg,Vgs) -+ (Vma, Von,)
(va]p? v¢1) (va]p? qu?) e (va]P’7 V¢NK)
In the next, Eq.(30) can be written as
GII) = B
mIly = ¢

(26)

(27)

(28)

(33)

(35)

4/8



It must be noted that the matrix G is not invertible because its first row is 0. Therefore,
the first row of the matrix G can be replaced by the constraints of the projection:

GIIX = B (36)
where -
é:G+[ﬂ,B:B+@ (37)

Then, the Ritz projection can be calculated by

nf =G 'B (38)

1.4.2 Matrix of the projection operator

In order to obtain the matrix representation of the projection operator I, let

NK NK
Mg =) dofy (T i) & = D> sijdj, i=1,-++,Ni (39)
=1 =1

Based on Eq.(26), we have

Np Np Nk Ng Np
HkK(bZ = Z Qi aMe = Z Ao <Z dij (ma) ¢j> = Z (Z (l@adij (ma)) ¢j (40)

a=1 a=1
so that
Si,j = Z awdofj(ma) (41)
Defining matrix D with size Ng x Np by
Dj, :=dof;(m,), j=1,---,Ng, a=1,--- Np (42)

with the matrix form as

dofy (my)  dofy (mg) -+ dofy (mn,)
dofy (m dofs (m -« dofy (m
_ 2'( 1) 2'( 2) . 2 ( Ne) (43)
dOfNK (ml) dOfNK (mg) e dOfNK (TTLNP)

and combining Eqgs.(28), (38) and (41), we have

Np

Sij = i (), Dja=>" (é—lé)i D, = <DG‘IB) (44)
a=1

— « 7t

Hence, the matrix representation IIF of the operator Iy : Vi(K) — Vi(K) in the
canonical basis is given by o
I} = DIIY, = DG™'B (45)
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It is not necessary to calculated G in Eq.(45) because
G = / Vm - Vmd() = / Vm - Ve¢dQD = BD (46)
K K

so that

G-G+ {m] :/KVm-deQ+ {T]

:/ Vm - VédQD + {ﬂ - BD
K

1.4.3 Stabilization term

Up to now, the unknown in Eq.(25) is the stabilization term. In general, the choice of
the bilinear form S¥ would depend on the problem and on the degrees of freedom. The
stabilization term the following approximation

S* (s = T i, 05 — T dy) = S™ (s — 1S i, 05 — I @)

Ng N
=a¥ (Z dof, (¢; — H£(¢i) Or Z dof, (¢; — Hf@.) ¢r>
r=1

r=1

N
= dof, (¢ — IIf &) ppdof, (6; — 11 &;) dra™ (61, 6,)
r=1

Egsy to find that we have a®* (¢,, ¢,) ~ 1 for all r, it will be sufficient to take the simple
choice

Nk
S (¢ — i i, ¢y — T y) = Y dof, (¢ — TIf ;) ¢dof, (¢ — IS 6;) 6, (49)
r=1

1.4.4 Last form of element stifflness metrix

The element stiffness matrix is written in Eq.(25):
Ki; = o™ (15 i, 117 ) + S (¢ — T ¢, 5 — 115 9) (50)
Conventionally, we defined the following two items

Ky =¥ (10,1 0;) = [V (1£9)) -V (11F6,) a0 5)

and ) K K K
K} = S" (¢ — Iy ¢4, 05 — 111 ¢;)

Nk (52)
=" dof, (¢; — K &) ¢,dot, (¢; — 115 ;) 6,
r=1
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The matrix form of Eq.(51) is

K;j:/Kv(qusj) -V (I ¢;) dQ
Np Np

= Z Zaivaajﬁ/ VmanﬁdQ (53>
K

a=1 =1

= ()" e

ij

For Eq.(39), we know that

dof, (I ¢;) = (TIf) . (54)
so that the matrix form of Eq.(52) can be obtained as
Ng
T
Ki=) (1-mf), (1-1f) = [(r-1f)" (1-mf)| -~ (59)
r=1
We end up with the following matrix expression for the VEM local stiffness matrix:
K = ()" GI + (1 -10f))" (I - 1) (56)
1.5 VEM matrix calculation
For k = 1, the basis for the space P is selected as
r—z —
MK = ml(xvy) = 1,m2($,y) = —K,mg(x,y) = Y JK (57)
hK hK
so that the matrix D defined in Eq.(43) can be written as
s()—ex  yO)—yr
I I
| 2%k y@ u
D — hc hx (58)
1 o~ K Yy hKyK
The matrix B defined in Eq.(32)
B = / Vm - Vod§2
" (59)

:_/KAm-¢dQ+ > [ (Vm-n,)pdr

eCOK “ €

For k =1, easy to find that Am = 0 and Vm is a constant vector. Then the metrix B
can be rewritten as

B=Vm Y [n.gdl, for k=1 (60)

eCOK €
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Then, based on Egs.(46) and (47), the matrix G and G can be calculated by
G=BD, G=BD (61)

where B is constructed in Eq.(37). Based on Egs.(38) and (45), the projection matrices
can be calculated by o
Iy =G 'B, IIf = DII}, (62)

Lastly, the element Stiffness matrix can be obtained as

Ki = (mE)" enf + (1-nf)" (1-mf) (63)

2 Some examples
For the Poisson equation given as
Au=0, in (64)

with the boundary conditions described as

u=0 on =0 (65)
u=1 on z=0L

two different geometric models are analyzed: a square and a logo of IKM. For the first
model the size is selected as x x y = 1 x 1(L = 1). For the second model the size is
selected as x x y = 100 x 60(L = 100).

Figure 1: Contour plot of a square calculated by VEM.
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