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1 Virtual Element Method for Poisson problem

1.1 Poisson equation

In this section a general Poisson equation is considered as
∆u+ f = 0 in Ω

u = gD on ΓD

∂nu = gN on ΓN

(1)

where Ω ∈ R is a polygonal domain and f ∈ L2(Ω). The variational formulation reads{
find u ∈ V := H1

0 (Ω) such that
a(u, v) = (f, v) := L(v) ∀v ∈ V

(2)

where
a(u, v) =

∫
Ω

∇u · ∇vdΩ (3)

Let {Th}h be a sequence of decompositions of Ω into K, and let Eh be the set of edges
e of Th. Then the discrete problem becomes{

find uh ∈ Vh such that
ah(uh, vh) = ⟨fh, vh⟩ ∀vh ∈ Vh ⊂ V

(4)

1.2 Virtual element function spaces

Consider the first virtual element space

Vk(K) :=
{
v ∈ H1(K) : ∆v ∈ Pk−2(K) in K, v|∂K = Bk(∂K)

}
(5)

where Pk is a polynomial with the highest order not exceeding k,

Bk(∂K) := {v ∈ C(∂K) : ve ∈ Pk(e), e ⊂ ∂K} (6)

It is not difficult to find that Bk(∂K) is a linear space of dimension n+ n(k− 1) = nk, n
is the number of sides of the polygon. Besides, the dimension of Vk(K) is

dimVk(K) = NK = n+ n(k − 1) +
k(k − 1)

2
= n+

k(k − 1)

2
(7)

where the last term corresponds to the dimension of polynomials of degree ≤ k−2 in two
dimensions.

In Vk(K), the degrees of freedom are selected as
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• Vk(K): the values of vh at the vertices;

• Ek(K): for k > 1, the values of vh at k − 1 uniformly spaced points on each edge e;

• Pk(K): for k > 1, the moments

1

|K|

∫
K

vhmαdΩ, ∀m ∈ Mk−2(K)

In the last item, the Mk−2 is the set of (k2 − k)/2 monomials

Mk−2 =

{(
x− xK

hK

)s

, |s| ≤ k − 2

}
(8)

where hK is the diameter of K, xK is the centroid of K, |K| is the area of the polygonal
element. The above variables can be calculated by

|K| = 1

2

∣∣∣∣∣
n∑

i=1

xiyi+1 − xi+1yi

∣∣∣∣∣ (9)

Besides, the centroid (xK , yK) can be calculated by

xK =
1

6|K|

n∑
i=1

(xi + xi+1) (xiyi+1 − xi+1yi) (10)

yK =
1

6|K|

n∑
i=1

(yi + yi+1) (xiyi+1 − xi+1yi) (11)

Conventionally, Mr = 0 for r ≤ −1. For the multi-index s ∈ Nd, we follow the usual
notation

xs = xs1
1 · · · xsd

d , |s| = s1 + · · ·+ sd (12)

Note that Mk−2 is a basis for Pk−2(K).

1.3 Projection operator and stability item

The projection operator
ΠK

k : Vk(K) → Pk(K) (13)

represents the projection of any function in the local virtual element space Vk(K) onto the
subspace of linear polynomials. This projection is defined for v ∈ Vk(K) by the conditions{

aK(ΠK
k v, p) = aK(v, p), ∀q ∈ Pk(K)

ΠK
k v = v̄

(14)

where

wh :=
1

n

n∑
i=1

wh(vi) (15)
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denotes the average value of wh at the vertices for k = 1. At the point, choosing aKh (u, v) =
aK(ΠK

k u,Π
K
k v) would ensure the consistency property

aKh (p, vh) = aK(p, vh) (16)

Besides the consistency property, the stability property should also be satified, which
described as

∀vh ∈ Vh(K), α∗a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗aK(vh, vh) (17)

where α∗ and α∗ are two different constants. In order to satified the stability property,
let SK(u, v) be any symmetric positive definite bilinear form to be chosen to verify

c0a
K(v, v) ≤ SK(v, v) ≤ c1a

K(v, v) ∀v ∈ Vk(K) with ΠK
k v = 0 (18)

for some positive constants c0 and c1. Then set

aKh (u, v) = aK
(
ΠK

k u,Π
K
k v
)
+ SK

(
u− ΠK

k u, v − ΠK
k v
)

∀u, v ∈ V k(K) (19)

easy to find that the bilinear form Eq.(19) satifies the consistency property Eq.(16) and
the stability property Eq.(17).

1.4 Local Stiffness Matrix

aKh (u, v) = aK
(
ΠK

k u,Π
K
k v
)
+ SK

(
u− ΠK

k u, v − ΠK
k v
)

(20)

The basis functions ϕi ∈ Vk(K) are defined as usual as the canonical basis functions

χi(ϕj) = dofi(ϕj) = δij, i, j = 1, · · · , NK (21)

so that a Lagrange-type interpolation identity can be obtained as

uh =

NK∑
i=1

dofi(vh)ϕi for all vh ∈ Vk(K) (22)

where NK := dimVk(K).
Based on the item discussed in section 1.3, the stiffness matrix is given by

aKh (u, v) = aK
(
ΠK

k u,Π
K
k v
)
+ SK

(
u− ΠK

k u, v − ΠK
k v
)

(23)

or
aKh (u, v) =

∫
K

∇
(
ΠK

k u
)
· ∇
(
ΠK

k v
)
dΩ + SK

(
u− ΠK

k u, v − ΠK
k v
)

(24)

Considering the interpolation in Eq.(22), the form of the local stiffness matrix can be
obtained as

Ki,j(K) = aK
(
ΠK

k ϕi,Π
K
k ϕj

)
+ SK

(
ϕi − ΠK

k ϕi, ϕj − ΠK
k ϕj

)
(25)
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1.4.1 Ritz projection

Since Mk(K) is a basis for Pk(K) ,the projection ΠK
k ϕi in Eq.(25) can be expanded in

the basis of Pk(K) or in that of V K
h :

ΠK
k ϕi =

NP∑
α=1

aα,imα =

NK∑
j=1

sj,iϕj (26)

The equation can be written in the matrix form as[
ΠK

k ϕ1,Π
K
k ϕ2, · · · ,ΠK

k ϕNK

]
= ΠK

k ϕ
T = mTΠK

k∗ = ϕTΠK
k (27)

where ΠK
k∗ is the Ritz projection, and(

ΠK
k∗
)
iα

= ai,α,
(
ΠK

k

)
ij
= si,j (28)

Besides, Eq.(14) can be written as{
aK
(
ΠK

k ϕi,mα

)
= aK (ϕi,mα)

ΠK
k ϕi = ϕi

, i = 1, · · · , NK , α = 1, · · · , NP (29)

or in matrix form as{
aK
(
ΠK

k ϕ,m
T
)
= aK

(
ΠK

k∗m,mT
)
= aK

(
ϕ,mT

)
ΠK

k ϕ
T = ϕT

(30)

Let
G = aK

(
m,mT

)
=

∫
K

∇m · ∇mTdΩ (31)

B = aK
(
m,ϕT

)
=

∫
K

∇m · ∇ϕTdΩ (32)

with the matrix form

G =


(∇m1,∇m1) (∇m1,∇m2) · · · (∇m1,∇mNP)
(∇m2,∇m1) (∇m2,∇m2) · · · (∇m2,∇mNP)

...
... . . . ...

(∇mNP ,∇m1) (∇mNP ,∇m2) · · · (∇mNP ,∇mNP)

 (33)

B =


(∇m1,∇ϕ1) (∇m1,∇ϕ2) · · · (∇m1,∇ϕNK

)
(∇m2,∇ϕ1) (∇m2,∇ϕ2) · · · (∇m2,∇ϕNK

)
...

... . . . ...
(∇mNP ,∇ϕ1) (∇mNP ,∇ϕ2) · · · (∇mNP ,∇ϕNK

)

 (34)

In the next, Eq.(30) can be written as{
GΠK

k∗ = B

mΠK
k∗ = ϕ

(35)
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It must be noted that the matrix G is not invertible because its first row is 0. Therefore,
the first row of the matrix G can be replaced by the constraints of the projection:

G̃ΠK
k∗ = B̃ (36)

where
G̃ = G+

[
m
0

]
, B̃ = B +

[
ϕ
0

]
(37)

Then, the Ritz projection can be calculated by

ΠK
k∗ = G̃−1B̃ (38)

1.4.2 Matrix of the projection operator

In order to obtain the matrix representation of the projection operator ΠK
k , let

ΠK
k ϕi =

NK∑
j=1

dofj
(
ΠK

k ϕi

)
ϕj =

NK∑
j=1

si,jϕj, i = 1, · · · , NK (39)

Based on Eq.(26), we have

ΠK
k ϕi =

NP∑
α=1

ai,αmα =

NP∑
α=1

ai,α

(
NK∑
j=1

dofj (mα)ϕj

)
=

NK∑
j=1

(
NP∑
α=1

ai,αdofj(mα)

)
ϕj (40)

so that

si,j =

NP∑
α=1

ai,αdofj(mα) (41)

Defining matrix D with size NK ×NP by

Djα := dofj(mα), j = 1, · · · , NK , α = 1, · · · , NP (42)

with the matrix form as

D =


dof1 (m1) dof1 (m2) · · · dof1 (mNP)
dof2 (m1) dof2 (m2) · · · dof2 (mNP)

...
... . . . ...

dofNK
(m1) dofNK

(m2) · · · dofNK
(mNP)

 (43)

and combining Eqs.(28), (38) and (41), we have

si,j =

NP∑
α=1

(
ΠK

k∗
)
iα
Djα =

NP∑
α=1

(
G̃−1B̃

)
iα
Djα =

(
DG̃−1B̃

)
ji

(44)

Hence, the matrix representation ΠK
k of the operator ΠK

k : Vk(K) → Vk(K) in the
canonical basis is given by

ΠK
k = DΠK

k∗ = DG̃−1B̃ (45)
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It is not necessary to calculated G̃ in Eq.(45) because

G =

∫
K

∇m · ∇mdΩ =

∫
K

∇m · ∇ϕdΩD = BD (46)

so that
G̃ = G+

[
m
0

]
=

∫
K

∇m · ∇mdΩ +

[
m
0

]
=

∫
K

∇m · ∇ϕdΩD +

[
m
0

]
= B̃D

(47)

1.4.3 Stabilization term

Up to now, the unknown in Eq.(25) is the stabilization term. In general, the choice of
the bilinear form SK would depend on the problem and on the degrees of freedom. The
stabilization term the following approximation

SK
(
ϕi − ΠK

k ϕi, ϕj − ΠK
k ϕj

)
= SK

(
ϕi − ΠK

k ϕi, ϕj − ΠK
k ϕj

)
= aE

(
NK∑
r=1

dofr
(
ϕi − ΠK

k ϕi

)
ϕr,

NK∑
r=1

dofr
(
ϕj − ΠK

k ϕj

)
ϕr

)

=

NK∑
r=1

dofr
(
ϕi − ΠK

k ϕi

)
ϕrdofr

(
ϕj − ΠK

k ϕj

)
ϕra

K (ϕr, ϕr)

(48)

Eqsy to find that we have aK (ϕr, ϕr) ≃ 1 for all r, it will be sufficient to take the simple
choice

SK
(
ϕi − ΠK

k ϕi, ϕj − ΠK
k ϕj

)
=

NK∑
r=1

dofr
(
ϕi − ΠK

k ϕi

)
ϕrdofr

(
ϕj − ΠK

k ϕj

)
ϕr (49)

1.4.4 Last form of element stiffness metrix

The element stiffness matrix is written in Eq.(25):

Kij = aK
(
ΠK

k ϕi,Π
K
k ϕj

)
+ SK

(
ϕi − ΠK

k ϕi, ϕj − ΠK
k ϕj

)
(50)

Conventionally, we defined the following two items

K1
ij = aK

(
ΠK

k ϕi,Π
K
k ϕj

)
=

∫
K

∇
(
ΠK

k ϕj

)
· ∇
(
ΠK

k ϕi

)
dΩ (51)

and
K2

ij = SK
(
ϕi − ΠK

k ϕi, ϕj − ΠK
k ϕj

)
=

NK∑
r=1

dofr
(
ϕi − ΠK

k ϕi

)
ϕrdofr

(
ϕj − ΠK

k ϕj

)
ϕr

(52)
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The matrix form of Eq.(51) is

K1
ij =

∫
K

∇
(
ΠK

k ϕj

)
· ∇
(
ΠK

k ϕi

)
dΩ

=

NP∑
α=1

NP∑
β=1

ai,αaj,β

∫
K

∇mα∇mβdΩ

=
((

ΠK
k∗
)T

GΠK
k∗

)
ij

(53)

For Eq.(39), we know that

dofr
(
ΠK

k ϕi

)
=
(
ΠK

k

)
ri

(54)

so that the matrix form of Eq.(52) can be obtained as

K2
ij =

NK∑
r=1

(
I −ΠK

k

)
ri

(
I −ΠK

k

)
rj
=
[(
I −ΠK

k

)T (
I −ΠK

k

)]
ij

(55)

We end up with the following matrix expression for the VEM local stiffness matrix:

KK
k =

(
ΠK

k∗
)T

GΠK
k∗ +

(
I −ΠK

k

)T (
I −ΠK

k

)
(56)

1.5 VEM matrix calculation

For k = 1, the basis for the space P is selected as

MK :=

{
m1(x, y) := 1,m2(x, y) :=

x− xK

hK

,m3(x, y) :=
y − yK
hK

}
(57)

so that the matrix D defined in Eq.(43) can be written as

D =


1 x(1)−xK

hK

y(1)−yK
hK

1 x(2)−xK

hK

y(2)−yK
hK...

...
...

1 x(n)−xK

hK

y(n)−yK
hK

 (58)

The matrix B defined in Eq.(32)

B =

∫
K

∇m · ∇ϕdΩ

= −
∫
K

∆m · ϕdΩ +
∑
e⊂∂K

∫
e

(∇m · ne)ϕdΓ
(59)

For k = 1, easy to find that ∆m = 0 and ∇m is a constant vector. Then the metrix B
can be rewritten as

B = ∇m
∑
e⊂∂K

∫
e

neϕdΓ, for k = 1 (60)

7/8



Then, based on Eqs.(46) and (47), the matrix G and G̃ can be calculated by

G = BD, G̃ = B̃D (61)

where B̃ is constructed in Eq.(37). Based on Eqs.(38) and (45), the projection matrices
can be calculated by

ΠK
k∗ = G̃−1B̃, ΠK

k = DΠK
k∗ (62)

Lastly, the element Stiffness matrix can be obtained as

KK
k =

(
ΠK

k∗
)T

GΠK
k∗ +

(
I −ΠK

k

)T (
I −ΠK

k

)
(63)

2 Some examples
For the Poisson equation given as

∆u = 0, in Ω (64)

with the boundary conditions described as{
u = 0 on x = 0

u = 1 on x = L
(65)

two different geometric models are analyzed: a square and a logo of IKM. For the first
model the size is selected as x × y = 1 × 1(L = 1). For the second model the size is
selected as x× y = 100× 60(L = 100).
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Figure 1: Contour plot of a square calculated by VEM.
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