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1 Problem statement

1.1 Governing equation

Considering the problems in solid mechanics defined in domain Ω ⊆ Rd with boundary
∂Ω = Γ(d is the dimension), the strong form of the boundary value problem of elasticity
is given by:

Find u(x) : Ω̄→ Rd such that

∇ · σ + f = 0, x ∈ Ω, (1a)

u = uD, x ∈ ΓD, (1b)

σ · nN = t̄, x ∈ ΓN . (1c)

The Cauchy stress tensor σ follows Hooke’s low

σ = Cε, (2)

where
ε =

1

2

(
∇u+∇uT

)
. (3)

1.2 Continuous variation problem

Assuming
V =

{
v ∈ H1(Ω)d : v = 0 on Γ0

}
, (4)

the weak form of the governing equation is: find u ∈ V such that∫
Ω

−∂σij(u)

∂xj
vidΩ =

∫
Ω

fividΩ. (5)

By using integration by parts, we have

−
∫
∂Ω

σij(u)vinjdΓ +

∫
Ω

σij(u)
∂vi
∂xj

dΩ =

∫
Ω

fividΩ. (6)

Considering the symmetry of stress tension, we have

σij(u)
∂vi
∂xj

= σij(u)
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
= σij(u)εij(v), (7)
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and the last form can be written as∫
Ω

σij(u)εij(v)dΩ =

∫
Ω

fividΩ +

∫
ΓN

t̄ividΓ, (8)

or the matrix form as∫
Ω

σ(u) : ε(v)dΩ =

∫
Ω

f · vdΩ +

∫
ΓN

t̄ · vdΓ. (9)

Then the variation problem can be written as: find u ∈ V such that

a(u,v) = L(v),v ∈ V , (10)

where
a(u,v) =

∫
Ω

σ(u) : ε(v)dΩ, (11)

L(v) =

∫
Ω

f · vdΩ +

∫
ΓN

t̄ · vdΓ. (12)

1.3 Mathematical preliminaries

It is more convenient to reduce the tensor expressions into equivalent matrix and vec-
tor representations. In particular, for any symmetric 2 × 2 matrix A, denote its Voigt
representation Ā by

A =

[
a11 a12

a21 a22

]
, Ā =


a11

a22

a12

 . (13)

On using Voigt (engineering) notation, we can write the stress and strain in terms of
3× 1 arrays:

σ̄ =


σ11

σ22

σ12

 , ε̄ =


ε11

ε22

2ε12

 . (14)

Furthermore, by using these conventions we can also express the strain- displacement
relation and the constitutive law in matrix form as:

σ̄ = Cε̄, ε̄ = Su, (15)

where S is a matrix differential operator that is given by

S =

 ∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

 , (16)

and C is the associated matrix representation of the material tensor that is given by

C =
E

(1− ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

 , (17)
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for plane stress and

C =
E

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2

 , (18)

for plane strain. Besides, E is Young’s modulus and ν of the Poisson’s ratio of the
material.

2 Projection operator of the displacement-for strain

2.1 Projection operator

The projection is designed as

ΠE,k : Vh(E)→ Pk(E), Vh(E) ≡
[
Vh(E)

]2
. (19)

The operator is constructed locally in each polygon so that satisfies the following orthog-
onality condition

aE
(
vh − Πkv

h,p
)

= 0. (20)

The basis functions for space Pk are selected as

• k = 0:
m0 =

(
1
0

)
,

(
0
1

)
; (21)

• k = 1:
m1 = m0,

(
−η
ξ

)
,

(
η
ξ

)
,

(
ξ
0

)
,

(
0
η

)
, (22)

where
ξ =

x− xE
hE

, η =
y − yE
hE

, (23)

and (xE, yE) is the center of the element and hE is the characteristic length of the element.
The definition of the local projection operator Πk ≡ ΠE,k can be rewritten as

aE(vh,p) = aE
(
Πkv

h,p
)
, ∀p ∈ Pk(E). (24)

Furthermore, coefficients of the projection of shape functions are determined due to the
orthogonal property ∫

E

ε(m)Cε(φT )dΩ =

∫
E

ε(m)Cε(φTΠ)dΩ

=

∫
E

ε(m)Cε(mTΠ∗
k)dΩ

=

∫
E

ε(m)Cε(mT )dΩΠ∗
k

(25)
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or
aE
(
m,φT

)
= aE

(
m,φTΠk

)
= aE

(
m,mTΠ∗

k

)
= aE

(
m,mT

)
Π∗
k. (26)

Lastly, the matrix of the projection operator can be written as{
GΠ∗

k = B

constraints
, (27)

where
G = aE

(
m,mT

)
=

∫
E

ε(m)Cε(mT )dΩ, (28)

B = aE
(
m,φT

)
=

∫
E

ε(m)Cε(φT )dΩ, (29)

and
G = BD, Πk = DΠ∗

k, (30)

where
Djα = dofj(mα). (31)

The matrix B can be calculated by

B =

∫
E

ε(m)Cε(φT )dΩ

= −
∫
E

∇ · (Cε(m)) · φTdΩ +

∫
∂E

ε(m)CnφTdΓ,

(32)

where the first term is zero and

n =

nx 0
0 ny
ny nx

 . (33)

As mentioned in Eq.(27), the constraints should be introduced as
∫
E

∇× Π1
kvdΩ =

∫
E

∇× vdΩ∫
∂E

Π1
kvdΓ =

∫
∂E

vdΓ

, (34)

where ∫
E

∇× vdΩ =

∫
∂E

v · tedΓ, (35)

where
te = [−ny, nx]T . (36)

For the first term in Eq.(34), the right hand can be written as∫
E

∇× φTdΩ =

∫
∂E

tTe φ
TdΓ =

∫
∂E

[
−ny nx

] [φT
φT

]
dΓ. (37)
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For the second term in Eq.(34), we have∫
∂E

φTdΓ =

∫
∂E

[
φT

φT

]
dΓ. (38)

Lastly, we have
G̃ = B̃D, (39)

and the projection can be obtained as

Π∗
k = G̃−1B̃, Πk = DΠ∗

k = DG̃−1B̃. (40)

2.2 Element stiffness matrix

The stiffness matrix is obtained by the contributions of consistency and stability compo-
nents

KE =

∫
E

ε (Πφ)Cε
(
ΠφT

)
dΩ +Ks

E

=

∫
Ω

Π∗T
k ε(m)Cε

(
mT

)
Π∗
kdΩ +Ks

E

= Π∗T
k

∫
Ω

ε(m)Cε
(
mT

)
dΩΠ∗

k +Ks
E

= Π∗T
k GΠ∗

k +Ks
E,

(41)

and the stability component Ks
E can be selected as

Ks
E = τhtr (Kc

E) (I −Πk)
T (I −Πk) . (42)

2.3 Numerical example

Figure 1: Numerical solutions obtained by VEM.
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