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1 Problem statement

1.1 Governing equation

Considering the problems in solid mechanics defined in domain Q C R? with boundary
02 = I'(d is the dimension), the strong form of the boundary value problem of elasticity
is given by:

Find u(zx) : Q@ — R? such that

Vio+f=0, €, (1a)
u=up, x€Ip, (1b)
o-ny=t xcly. (1c)

The Cauchy stress tensor o follows Hooke’s low
o =Ce, (2)
where

:%(VU—FVU ). (3)

1.2 Continuous variation problem

Assuming
V:{UEHl(Q)d:vzo on TIo}, (4)
the weak form of the governing equation is: find w € V such that
/ 905w, 401 — / FrudQ. (5)
Q O

By using integration by parts, we have

—/ Uij(u>vinjdr+/Uij(“)%dQ:/fﬂ)idQ. (6)
a0 Q Oz, O

Considering the symmetry of stress tension, we have

@UZ‘ . 1 (%i 8’0]‘ o B
Oij (u>8_a:j = 0ij (u)§ (6% + 8xi> = 0;j(u)e;;(v), (7)
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and the last form can be written as
/ oij(u)e;j(v)dQ = / fiv;dQ +/ tiv;dl, (8)
Q Q Tx

or the matrix form as

/Qo'(u) ce(v)dQ = /Qf ~odQ + /FN t-odl. (9)

Then the variation problem can be written as: find w € V such that
a(u,v) = L(v),v €V, (10)

where

a(u,v) = /Qa(u) :e(v)dQ, (11)
L(v) = / f-vdQ +/ t-vdl. (12)

1.3 Mathematical preliminaries

It is more convenient to reduce the tensor expressions into equivalent matrix and vec-
tor representations. In particular, for any symmetric 2 x 2 matrix A, denote its Voigt
representation A by

ailz aig 1 an
A= |: 1 s A= 929 . (13)
21 Qa22

On using Voigt (engineering) notation, we can write the stress and strain in terms of
3 x 1 arrays:

011 €11
o= 092 s € = €929 . (].4)
012 2e12

Furthermore, by using these conventions we can also express the strain- displacement
relation and the constitutive law in matrix form as:

& =Cé¢ ¢&=Su, (15)

where S is a matrix differential operator that is given by

20

S=10 2|, 16
, 1 "
dy Oz

and C' is the associated matrix representation of the material tensor that is given by

1 v
E
C=——1|v 1 0 (17)
1,2 )
(1—12) 0 0



for plane stress and

E l—-v v 0
C = v 1—-v 0 |, 18
(14+v)(1—2v) 1-2v 18)
0 0 =~

for plane strain. Besides, F is Young’s modulus and v of the Poisson’s ratio of the
material.

2 Projection operator of the displacement-for strain

2.1 Projection operator

The projection is designed as
Mgy : VIE) = P(E), V'(E)=["E)]. (19)

The operator is constructed locally in each polygon so that satisfies the following orthog-
onality condition
ap (vh — Hkvh,p) =0. (20)

The basis functions for space P}, are selected as

e k=0:
(.0
: mem (8)-(8)-6)- () .
where ‘o x ;Eg;E7 n— Y ;EyE7 (23)

and (g, yg) is the center of the element and hp is the characteristic length of the element.
The definition of the local projection operator Il = Ilg can be rewritten as

ap(v",p) = ap (", p), Vp € PL(E). (24)

Furthermore, coefficients of the projection of shape functions are determined due to the
orthogonal property

/E e(m)Ce(¢p")dQ) = /E e(m)Ce(¢p"II)dQ
:/s(m)Ce(mTH}Z)dQ (25)

= /Es(m)Cs(mT)dQHZ
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or

ap (m, ¢T) =ag (m, qﬁTHk) =ag (m, mTHZ) =ag (m,mT) IT;. (26)
Lastly, the matrix of the projection operator can be written as
GII; = B
{ e (27)
constraints
where
G =ag(m,m") = / e(m)Ce(m™)dQ, (28)
E
B =ap(m,¢") = / e(m)Ce(¢")dQ, (29)
E
and
G = BD, I, = DII;, (30)
where
chx = dij(ma). (31)
The matrix B can be calculated by
B = / m)Ce(o’)dN
(32)
= / V- (Ce(m))-p"dQ + / e(m)Cn¢’dr,
E OF
where the first term is zero and
ny, 0
n=|0 n,|. (33)
Ny Ng
As mentioned in Eq.(27), the constraints should be introduced as
/VxHide:/vadQ

/H,lgvdF:/ vdl’
OF oE

where
/ V x vdQ = / v - t.dl, (35)
E OF
where
te=[—ny,n.)". (36)
For the first term in Eq.(34), the right hand can be written as
¢T
/ V x ¢pTdQ = / t7pTdl = / R [ T} dr. (37)
E OF OF ¢
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For the second term in Eq.(34), we have

T
. ol dl = /8 i {gb ¢T] dr. (38)

G = BD, (39)

and the projection can be obtained as

Lastly, we have

II; =G™'B, II,=DII; = DG 'B. (40)

2.2 Element stiffness matrix

The stiffness matrix is obtained by the contributions of consistency and stability compo-
nents

Kp = / e (Ip) Ce (IIp") A2+ K7,
E

= / II;"e(m)Ce (m") IT;dQ + K},
Q

(41)
= HZT/ e(m)Ce (m") dOII; + K3,
= H’,;TG?'IZ + K3,
and the stability component K3 can be selected as
Kj, = 7' (Kp) (I —TL,)" (I —T,,). (42)

2.3 Numerical example

Figure 1: Numerical solutions obtained by VEM.
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