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A B S T R A C T

In this paper, a novel higher stabilization-free virtual element method is proposed for com-
pressible hyper-elastic materials in 2D. Different from the most traditional virtual element
formulation, the method does not need any stabilization. The main idea is to modify the virtual
element space to allow the computation of a higher-order polynomial 𝐿2 projection of the
gradient. Based on that the stiffness matrix can be obtained directly which greatly simplifies
the analysis process, especially for nonlinear problems. Hyper-elastic materials are considered
and some benchmark nonlinear problems are solved to verify the capability and accuracy of
the stabilization-free virtual element method.

. Introduction

In recent years, some advanced numerical methods based on polygonal meshes were proposed. These improve the ability and
lexibility to discretize computational domains with high geometrical complexity. Some of the techniques can be listed as Polygonal
inite Element Method (PFEM) [1,2], Discontinuous Galerkin Methods (DG) [3,4], Mimetic Finite Difference Methods (MFD) [5–7],
nd some other methods like the Extended FEMs (XFEM) [8] and Generalized FEMs (GFEM) [9]. In addition to these established
umerical methods, the Virtual element method (VEM), which was introduced in [10–12], has gained increasing attention. The
EM can be regarded as a generalization of the classical finite element method (FEM) to general polygonal meshes. Different from
onventional polygonal/polyhedral methods, the basis functions in VEM are defined by the local partial differential equations (PDEs)
ut never need to be explicitly computed. Up to now, the VEM has been introduced and developed for the Poisson equation [10],
inear elastic [13–17], hyperelastic materials at finite deformations [18–21], contact problems [22–25], elastodynamics problems
26–28], phase field modeling problems [29,30] and for eigenvalue problems [31,32].

It is well-known that the VEM used in the above-introduced works requires stabilization to avoid the zero-energy modes and
o ensure the stability of the method. The stabilization techniques, discussed for classical problems in [10,29], are based on a
ormulation that involves the degrees of freedom. However, the stabilization methods sometimes have bad performances for bending-
ominated problems and rely on a chosen stabilization parameter. Some useful stabilization approaches are given for nonlinear
roblems in [19]. It should be pointed out that there are various formats [14,33] for the construction of the stabilization term,
ncluding the selection of different and solution-dependent parameters, especially for complex nonlinear problems.

A stabilization-free virtual element formulation (SFVEM) only relies on the constant data stemming from the mechanical model,
hen, especially in the nonlinear range SFVEM will increase the use of VEM in engineering analysis. Recently, some new techniques
ave been proposed to construct stabilization-free or self-stabilized virtual elements schemes. An enhanced VEM formulation that can
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Fig. 1. Reference and current configurations in the geometrically nonlinear analysis.

bypass the need for stabilization terms for 𝑘 = 1 was proposed in [34]. Similar to this enhanced formulation, a self-stabilized virtual
element was proposed by Lamperti [35] for 2D linear elastostatics based on the Hu–Washizu variational approach. Besides, the
stabilization-free virtual element method (Enlarged Enhancement Virtual Element Methods) was proposed by Berrone in [36,37] for
the 2D Poisson equation. The main idea of the method is to modify the first-order virtual element space to allow the computation of a
higher-order polynomial 𝐿2 projection of the gradient [38] to delete the stabilization term. Under the right conditions, they proved
the well-posedness and error estimation of the 2D Poisson equation, laying the foundation for solving complex and challenging
problems. In the following, the stabilization-free method has been extended to solid mechanics (𝑘 = 1 and 𝑘 = 2) [38,39], as well as
to eigenvalue problems [40]. But so far, the stabilization-free formulation has not been applied to nonlinear mechanical problems.

The main aim of this work is to extend the work in [38,39] to hyperelastic materials at finite deformations. In this first step,
we try to re-deduce the logical framework of the entire stabilization-free VEM, to obtain a unified approximate formulation for the
gradient. The specific process of calculation of the 𝐻1 projection matrix 𝜫∇ (original elliptic projection matrix) and the 𝐿2 projection
matrix 𝜫𝑚 are given in a form that is more in line with the approach to mechanical problems. By employing the enhancement space
given in [12], it is shown how the stabilization-free method can be extended to higher-order interpolations (for 𝑘 > 2). Then, by
using an approximate expression for the gradients, we obtain a non-linear incremental iteration format similar to conventional finite
element methods. It is easy to find that the method does not need any stabilization terms for linear as well as for nonlinear problems,
so it simplifies the element formulation, especially for nonlinear problems. The method can be easily extended to other types of
nonlinear problems by computing the gradient of the variable in each polygonal element.

The paper is organized as follows. The governing equations for hyperelastic problems are reviewed and presented in Section 2.
Then in Section 3, we introduce the function spaces used in stabilization-free VEM and calculate different forms of projection
operators. The stabilization-free virtual element formulation for hyperelastic problems is given in Section 4. Some numerical
examples are presented and discussed in Section 5. The paper closes with some concluding remarks in Section 6.

2. Mathematical formulation

2.1. Governing equations for finite strain elasticity

In this work, let us consider a body that occupies a bounded domain 𝛺 ∈ R2, see Fig. 1. Let 𝛤 = 𝜕𝛺 = 𝛤𝐷 ∪𝛤𝑁 be the boundary
of 𝛺 with 𝛤𝐷 the Dirichlet boundary and 𝛤𝑁 the Neumann boundary and 𝛤𝐷 ∩ 𝛤𝑁 = ∅.

Consider a general solid undergoes a motion 𝝋 so that the geometry changes from the initial to the current state. Each material
point initially at 𝑿 is characterized by the position 𝒙 at time 𝑡 given by the motion

𝒙 = 𝝋 (𝑿, 𝑡) = 𝑿 + 𝒖(𝑿, 𝑡), (1)

where 𝒖 is the displacement. We denote by 𝑭 the deformation gradient defined by

𝑭 = Grad𝝋 = d𝒙
d𝑿

= 𝑰 + ∇𝒖, (2)

where 𝑰 is the identity tensor. The right Cauchy–Green deformation tensor can be defined as

𝑪 = 𝑭 𝑇 ⋅ 𝑭 , (3)

and the Green–Lagrange strain tensor is provided by

𝑬 = 1
2
(𝑪 − 𝑰) . (4)

Considering the variables related to the initial configuration, the standard equilibrium equation for the model problem is given
by

−Div𝑷 = 𝒇 , (5)
2
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where 𝑷 is the first Piola–Kirchhoff stress and 𝒇 is the body force. The Dirichlet and Neumann boundary conditions are described
as

𝒖 = 𝒖̄ on 𝛤𝐷, (6)

𝑷 ⋅𝑵 = 𝒕̄ on 𝛤𝑁 , (7)

where 𝑵 is the outward normal vector, 𝒖̄ is the prescribed displacement and 𝒕̄ is the prescribed surface traction.
Naturally, it is simpler to work in the initial configuration with symmetrical stress tensors. Then, the second Piola–Kirchhoff

stress is introduced as

𝑺 = 𝑭 −1 ⋅ 𝑷 = 𝐽𝑭 −1 ⋅ 𝝈 ⋅ 𝑭 −𝑇 , (8)

where 𝝈 is the Cauchy stress tensor (real stress), which refers to the current configuration; 𝐽 is the determinant of the deformation
gradient tensor, which describes the volume change between the current and initial configuration

𝐽 = det(𝑭 ). (9)

We have the following work conjugate relationship

 = ∫𝑉0
𝛿𝑬 ∶ 𝑺d𝑉0 = ∫𝑉0

𝛿𝑭 ∶ 𝑷 d𝑉0, (10)

where 𝛿𝑬 is the variation of the Green strain tensor, 𝛿𝑭 is the variation of deformation gradient tensor,

𝛿𝑬 = 1
2
𝛿
(

𝑭 𝑇 ⋅ 𝑭 − 𝑰
)

= 1
2
(

𝛿𝑭 𝑇 ⋅ 𝑭 + 𝑭 𝑇 ⋅ 𝛿𝑭
)

. (11)

2.2. Constitutive equations for hyperelastic material

For a homogeneous compressible isotropic hyperelastic material, the elastic behavior of a deformable body can be specified in
terms of a hyperelastic energy density 𝛹 . For convenience, the strain energy function 𝛹 is often expressed as a function of the right
Cauchy–Green tensor 𝑪 = 𝑭 𝑇 ⋅ 𝑭 or its invariants as

𝛹 (𝑭 (𝑿),𝑿) = 𝛹 (𝑪(𝑿),𝑿) = 𝛹
(

𝐼𝐶 , 𝐼𝐼𝐶 , 𝐼𝐼𝐼𝐶 ,𝑿
)

, (12)

where the invariants 𝐼𝐶 , 𝐼𝐼𝐶 , 𝐼𝐼𝐼𝐶 are defined as

𝐼𝐶 = tr𝑪 = 𝑪 ∶ 𝑰

𝐼𝐼𝐶 = 1
2
[

(tr𝑪)2 − tr𝑪2]

𝐼𝐼𝐼𝐶 = det𝑪 = 𝐽 2.

(13)

Based on the three invariants, a general form of strain energy density can be defined

𝛹 (𝐼𝐶 , 𝐼𝐼𝐶 , 𝐼𝐼𝐼𝐶 ) =
∞
∑

𝑚+𝑛+𝑘=1
𝐴𝑚𝑛𝑘

(

𝐼𝐶 − 3
)𝑚 (

𝐼𝐼𝐶 − 3
)𝑛 (𝐼𝐼𝐼𝐶 − 1

)𝑘 . (14)

In this work, we focus on the neo-Hookean hyperelastic model

𝛹 =
𝜇
2
(

𝐼𝐶 − 3
)

− 𝜇 ln 𝐽 + 𝜆
2
(ln 𝐽 )2 , (15)

where the Lame parameters 𝜆 and 𝜇 are given as

𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

, 𝜇 = 𝐸
2(1 + 𝜈)

. (16)

where 𝐸 and 𝜈 denote Young modulus and Poisson ratio, respectively.
Considering 𝜕𝐽

𝜕𝑪 = 1
2𝐽𝑪

−1, the second Piola–Kirchhoff stress tensor 𝑺 for the given neo-Hookean hyperelastic model can be
btained as

𝑺 = 2 𝜕𝛹
𝜕𝑪

= 𝜇𝑰 − 2𝜇 1
𝐽

𝜕𝐽
𝜕𝑪

+ 2𝜆 (ln 𝐽 ) 1
𝐽

𝜕𝐽
𝜕𝑪

= 𝜇
(

𝑰 − 𝑪−1) + 𝜆 (ln 𝐽 )𝑪−1.
(17)

In hyperelasticity, the constitutive tensor  can be achieved by differentiating the second Piola–Kirchhoff stress 𝑺 as

 = 2 𝜕𝑺
𝜕𝑪

= 𝜆𝑪−1 ⊗ 𝑪−1 + 2 (𝜇 − 𝜆 ln 𝐽 ), (18)

here

𝐼𝐽𝐾𝐿 = −
𝜕
(

𝑪−1)
𝐼𝐽 = 1 [(

𝑪−1) (

𝑪−1) +
(

𝑪−1) (

𝑪−1) ]

. (19)
3

𝜕𝐶𝐾𝐿 2 𝐼𝐾 𝐽𝐿 𝐼𝐿 𝐽𝐾
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Fig. 2. First and second order virtual element.

3. Function space and projection operators

In this part, we start to describe the basic idea of the virtual element method (VEM) and the stabilization-free virtual element
method (SFVEM). To describe the idea of the method more clearly, it is necessary to provide definitions and constructions of different
projection operators in advance.

Let ℎ be the decomposition of the computational domain 𝛺 into a set of nonoverlapping polygonal elements 𝐸 (as given in
ig. 2), ℎ being the set of edges 𝑒 of ℎ. The symbol 𝑛𝐸 represents the number of edges of a polygon 𝐸 and the mesh size ℎ𝐸 is
he diameter of 𝐸. Then we can denote by 𝑘(𝐸) the scaled (𝑘 + 1) (𝑘 + 2) ∕2 monomials:

𝑘(𝐸) ∶=
{(

𝒙 − 𝒙𝐸
ℎ𝐸

)𝑠
, |𝒔| ≤ 𝑘

}

, (20)

where 𝒙𝐸 are the cartesian coordinates of the centroid of 𝐸, |𝑠| ∶= 𝑠1 + 𝑠2 and 𝒙𝑠 ∶= 𝑥𝑠11 𝑥𝑠22 .
Different from the finite element method, in order to deal with polygonal elements of arbitrary shape, VEM uses general spaces

that may contain non-polynomial functions [17]. To compute the contribution of these non-polynomial functions to the stiffness
matrix, one has to compute a local projector on the space of polynomials of degree ≤ 𝑘 [12].

3.1. Original elliptic projection operator

In the classical VEM, the projection operator is selected as the energy projector 𝛱∇
𝑘 (𝐸), which is defined as

𝛱∇
𝑘 (𝐸) ∶ 𝑘(𝐸) → 𝑘(𝐸). (21)

For simplicity’, the projector 𝛱∇
𝑘 (𝐸) can be written as 𝛱∇

𝑘 . The basis function 𝜙𝑖 ∈ 𝑘(𝐸) are defined as

𝝌 𝑖(𝜙𝑗 ) = dof(𝜙𝑗 ) = 𝛿𝑖𝑗 , 𝑗, 𝑗 = 1,… , 𝑁𝐸 , (22)

where 𝝌 is the degree of freedom, 𝑁𝐸 ∶= dim𝑘(𝐸).
To construct the projector 𝛱∇

𝑘 , let us consider the virtual element space

𝑘(𝐸) ∶=
{

𝑢ℎ ∈ 𝐻1(𝐸) ∶ 𝛥𝑢 ∈ 𝑘−2(𝐸) in 𝐸, 𝑢|𝜕𝐸 = 𝑘(𝜕𝐸)
}

(23)

where 𝑘 is a polynomial with the highest order not exceeding 𝑘,

𝑘(𝜕𝐸) ∶=
{

𝑢ℎ ∈ 𝐶(𝜕𝐸) ∶ 𝑢𝑒 ∈ 𝑘(𝑒), 𝑒 ⊂ 𝜕𝐸
}

(24)

In 𝑘(𝐸), the degrees of freedom are selected as

• 𝝌1(𝐸): for 𝑘 ≥ 1, the values of 𝑢ℎ at the vertices;
• 𝝌2(𝐸): for 𝑘 > 1, the values of 𝑢ℎ at 𝑘 − 1 uniformly spaced points on each edge 𝑒;
• 𝝌3(𝐸): for 𝑘 > 1, the moments

1
|𝐸|

∫𝐸
𝑢ℎ𝑚𝛼d𝛺, ∀𝑚𝛼 ∈ 𝑘−2(𝐸).

It is not difficult to find that 𝑘(𝜕𝐸) is a linear space of dimension 𝑛𝐸 + 𝑛𝐸 (𝑘− 1) = 𝑛𝐸𝑘, where 𝑛𝐸 is the number of edges of the
olygon element. The dimension of 𝑘(𝐸) is

dim𝑘(𝐸) = 𝑁𝐸 = 𝑛𝐸 + 𝑛𝐸 (𝑘 − 1) +
𝑘(𝑘 − 1)

2
= 𝑛𝐸 +

𝑘(𝑘 − 1)
2

(25)

where the last term corresponds to the dimension of polynomials of degree ≤ 𝑘 − 2 in two dimensions.
4
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Based on the above definition, for any given 𝐸 ∈ ℎ, the projection 𝛱∇
𝑘 (𝐸) defined for 𝑢 ∈ 𝑘(𝐸) is calculated by the orthogonality

condition: ∀𝑢 ∈ 1(𝐸),

∫𝐸
∇
(

𝛱∇
𝑘 𝑢 − 𝑢ℎ

)

⋅ ∇𝑝 d𝛺 = 0 ⇒ ∫𝐸
∇𝛱∇

𝑘 𝑢 ⋅ ∇𝑝 d𝛺 = ∫𝐸
∇𝑢ℎ ⋅ ∇𝑝 d𝛺, ∀𝑝 ∈ 𝑘(𝐸). (26)

On expanding the right-hand side of Eq. (26), using integration by parts and considering the Green formula, we obtain

∫𝐸
∇𝛱∇

𝑘 𝑢 ⋅ ∇𝑝 d𝛺 = −∫𝐸
𝑢ℎ ⋅ 𝛥𝑝 d𝛺 + ∫𝜕𝐸

𝑢ℎ ⋅
𝜕𝑝
𝜕𝒏

d𝛤 . (27)

The condition Eq. (27) can be extended to include the constant part of 𝑢ℎ by prescribing a projection operator onto constants
𝑃0 ∶ 1(𝐸) → 0(𝐸),

𝑃0
(

𝛱|

∇
𝑘 𝑢 − 𝑢ℎ

)

= 0. (28)

The constants is selected as

𝑃0(𝑢) ∶=
1
𝑛𝐸

𝑛𝐸
∑

𝑖=1
𝑢ℎ for 𝑘 = 1, (29)

𝑃0(𝑢) ∶=
1
|𝐸|

∫𝐸
𝑢ℎd𝛺 for 𝑘 ≥ 2. (30)

Since 𝑘(𝐸) is a basis for 𝑘(𝐸), the projection 𝛱∇
𝑘 𝜙𝑖 in Eq. (26) can be expanded in the basis of 𝑘(𝐸) as

𝛱∇
𝑘 𝜙𝑖 =

𝑁𝑃
∑

𝛼=1
𝑎𝛼,𝑖𝑚𝛼 =

𝑁𝐸
∑

𝑗=1
𝑠𝑗,𝑖𝜙𝑗 , (31)

where 𝑁𝑃 ∶= dim𝑘(𝐸). Then Eq. (31) can be written in the matrix form as
[

𝛱∇
𝑘 𝜙1,𝛱

∇
𝑘 𝜙2,… ,𝛱∇

𝑘 𝜙𝑁𝐾

]

= 𝛱∇
𝑘 𝝓

𝑇 = 𝒎𝑇𝜫∇
𝑘∗ = 𝝓𝑇𝜫∇

𝑘 , (32)

where 𝝓𝑇 = [𝜙1, 𝜙2,… , 𝜙𝑁𝐸
], 𝒎𝑇 = [𝑚1, 𝑚2,… , 𝑚𝑁𝑃

], 𝜫∇
𝑘 is the matrix representation of the operator 𝛱∇

𝑘 . Furthermore, 𝜫∇
𝑘∗ is the

matrix representation of the operator 𝛱∇
𝑘 acting from 𝑘(𝐸) to 𝑘(𝐸). The two different basis functions are connected by

𝒎𝑇 = 𝝓𝑇𝑫 (33)

where matrix 𝑫 is the transition matrix with size 𝑁𝐸 ×𝑁𝑃 given by

𝑫𝑗𝛼 ∶= dof𝑗 (𝑚𝛼), 𝑗 = 1,… , 𝑁𝐸 , 𝛼 = 1,… , 𝑁𝑃 , (34)

which yields

𝜫∇
𝑘 = 𝑫𝜫∇

𝑘∗. (35)

Using the above basis functions and matrix formulation, the elliptic projectors 𝜫∇
𝑘∗ and 𝜫∇

𝑘 can be calculated by considering
Eq. (27) together with the condition Eq. (28) and the definition of the degree of freedom. For a detailed description of the calculation
process, see [10,11]. It should be emphasized that the elliptic projection operator plays an important role in the classical VEM. But
in this work, this projection is used only as a tool to calculate the 𝐿2 projection 𝛱0

𝑙,𝐸∇, which will be discussed in the following.

3.2. 𝐿2 projection operator

To define our discrete bilinear form for the stabilization-free VEM, we define the 𝐿2 projection operator 𝛱0
𝑙,𝐸∇ of the gradient

of function in 1(𝐸), which is defined as

𝛱0
𝑙,𝐸∇ ∶ 1(𝐸) →

[

𝑙(𝐸)
]2 . (36)

Based on the above definition, for any given 𝐸 ∈ ℎ, let 𝑙 ∈ N be given, which depends on the order 𝑘 and the number of edges 𝑛𝐸 .
The selection of 𝑙 is discussed in [36,37] for the first-order stabilization-free VEM as

(𝑙 + 1)(𝑙 + 2) ≥ 𝑛𝐸 − 1, 𝑘 = 1. (37)

Besides, a more restrictive bound is given in [38] as

2𝑙 + 3 > 𝑛𝐸 , 𝑘 = 1. (38)

For the higher order method 𝑘 > 1, by considering the element eigenvalue problem for plane elasticity, an inequality between 𝑘
and the number of edges 𝑛𝐸 to ensure the results in a well-posed, stable discrete problem is given in [39] as
5

2𝑙 − 2𝑘 + 5 ≥ 𝑛𝐸 . (39)
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Let 𝑢ℎ ∈ 1(𝐸) satisfying the orthogonality condition

∫𝐸
𝒑𝑇𝛱0

𝑙,𝐸∇𝑢ℎ d𝛺 = ∫𝐸
𝒑𝑇∇𝑢ℎ d𝛺, (40)

where the right hand can be written as

∫𝐸
𝒑𝑇∇𝑢ℎ d𝛺 = ∫𝜕𝐸

(

𝒑𝑇 ⋅ 𝒏
)

𝑢ℎd𝛤 − ∫𝐸
(div𝒑) 𝑢ℎ d𝛺. (41)

Then, Eq. (40) can be written as

∫𝐸
𝒑𝑇𝛱0

𝑙,𝐸∇𝑢ℎ d𝛺 = ∫𝜕𝐸

(

𝒑𝑇 ⋅ 𝒏
)

𝑢ℎd𝛤 − ∫𝐸
(div𝒑) 𝑢ℎ d𝛺, ∀𝒑 ∈

[

𝑙(𝐸)
]2 . (42)

In Eq. (42), the gradient of variable ∇𝑢 and 𝒑 can be expanded as

∇𝑢ℎ = (𝑵𝑝)𝑇 𝝐̂, 𝒑 = (𝑵𝑝)𝑇 𝒑̂, (43)

where □̂ represents a vector, 𝜖 ∶= ∇𝑢ℎ, and 𝑵𝑝 contains the basis elements as

𝑵𝑝 ∶=

[

1 𝜉 𝜂 ⋯ 𝜂𝑙 0 0 0 ⋯ 0

0 0 0 ⋯ 0 1 𝜉 𝜂 ⋯ 𝜂𝑙

]𝑇

=

[

𝒎𝑇
𝑙 𝟎𝑇

𝟎𝑇 𝒎𝑇
𝑙

]

, (44)

where 𝒎𝑙 is a basic for complete polynomials of order 𝑙.
In the next, on expanding 𝑢 in terms of its basis in 𝑘(𝐸), we obtain

𝑢ℎ = 𝝓𝑇 𝒖̃, (45)

where 𝒖̃ ∈ R𝑁𝐸 . By denoting 𝜫𝑚 the matrix representation of the operator 𝛱0
𝑙,𝐸 with respect to the basis 𝑵𝑝, we have

𝛱0
𝑙,𝐸∇𝑢 = (𝑵𝑝)𝑇 𝜫𝑚𝒖̃. (46)

Substituting Eqs. (45) and (46) into Eq. (42) yields

𝒑̂𝑇 ∫𝐸
𝑵𝑝 (𝑵𝑝)𝑇 d𝛺𝜫𝑚𝒖̃ = 𝒑̂𝑇 ∫𝜕𝐸

(𝑵𝑝 ⋅ 𝒏)𝝓𝑇 d𝛤 𝒖̃ − 𝒑̂𝑇 ∫𝐸
(div𝑵𝑝)𝝓𝑇 d𝛺𝒖̃. (47)

Since this is true for all 𝒖̃ and 𝒑̂, the above equation Eq. (47) can be written as

∫𝐸
𝑵𝑝 (𝑵𝑝)𝑇 d𝛺𝜫𝑚 = ∫𝜕𝐸

(𝑵𝑝 ⋅ 𝒏)𝝓𝑇 d𝛤 − ∫𝐸
(div𝑵𝑝)𝝓𝑇 d𝛺. (48)

Then the projection matrix 𝜫𝑚 can be calculated via

𝜫𝑚 = 𝑮−1𝑩, (49)

where

𝑮 ∶= ∫𝐸
𝑵𝑝 (𝑵𝑝)𝑇 d𝛺, (50)

𝑩 ∶= ∫𝜕𝐸
(𝑵𝑝 ⋅ 𝒏)𝝓𝑇 d𝛤 − ∫𝐸

(div𝑵𝑝)𝝓𝑇 d𝛺. (51)

One possibility to compute the integral term 𝑮 in Eq. (50) is to partition 𝐸 into triangles (as shown in Fig. 3). Then in each
triangle, the Gaussian integral is selected for numerical integration, and the integration order is 𝑙2. Another possibility is the use of
a formula obtained for polynomials from the divergence theorem

∫𝐸
𝜉𝑝𝜂𝑞d𝛺 = 1

2 ∫𝜕𝐸

[

𝜉𝑝+1𝜂𝑞

𝑝 + 1
𝑛𝑥 +

𝜉𝑝𝜂𝑞+1

𝑞 + 1
𝑛𝑦

]

d𝛤 , (52)

where 𝒏 = (𝑛𝑥, 𝑛𝑦) is the outward normal. The first method is selected in this work.
Note that the calculation of matrix 𝑩 reveals the major difference between the proposed stabilization-free VEM and the

conventional VEM. As given in Eq. (51), we record

𝑩 = 𝑰1 − 𝑰2, (53)

where

𝑰1 = ∫𝜕𝐸
(𝑵𝑝 ⋅ 𝒏)𝝓𝑇 d𝛤 , 𝑰2 = ∫𝐸

(div𝑵𝑝)𝝓𝑇 d𝛺. (54)

For the first term 𝑰1, we have

𝑰1 =
∑

∫ 𝑵𝑝𝒏𝝓𝑇 d𝛤 =
∑

|𝑒|
∫

1
𝑵𝑝𝒏𝝓𝑇 d𝑡, (55)
6
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Fig. 3. Triangulation of polygonal element.

here 𝑵𝑝𝒏𝝓𝑇 is at most a polynomial of degree 𝑙 + 𝑘 and the integral can be calculated by the one-dimensional Gauss quadrature
ule.

Generally, it is complex to calculate the integral 𝑰2 since the shape function 𝜙 (with order 𝑘) is unknown in the element. To
calculate 𝐼2, we need to use the approximation technique mentioned in [35,37–39], We define the 𝛱0

𝑘,𝐸 be the standard scalar 𝐿2(𝐸)
rojection from 𝑘(𝐸) to 𝑘 that

(

𝛱0
𝑘,𝐸𝑣, 𝑝

)

𝐸
= (𝑣, 𝑝)𝐸 ∀𝑣 ∈ 𝑘(𝐸), 𝑝 ∈ 𝑘(𝐸), (56)

which can be written as

∫𝐸
𝒎𝛱0

𝑘,𝐸𝝓
𝑇 d𝛺 = ∫𝐸

𝒎𝝓𝑇 d𝛺. (57)

Defining the 𝜫0
𝑘∗ to be the matrix of 𝛱0

𝑘,𝐸 on the basis of 𝑚 ∈ 𝑘 and 𝜫0
𝑘 being related to the basis of 𝜙𝑇 , we have

𝛱0
𝑘,𝐸𝝓

𝑇 = 𝝓𝑇𝜫0
𝑘 = 𝒎𝑇𝜫0

𝑘∗, (58)

where 𝒎 is the same vector given in Eq. (32). Substituting Eq. (58) into Eq. (57) yields

∫𝐸
𝒎𝒎𝑇 d𝛺𝜫0

𝑘∗ = ∫𝐸
𝒎𝝓𝑇 d𝛺, (59)

so that we arrive at

𝑯𝜫0
𝑘∗ = 𝑴𝜙, (60)

where

𝑯 = ∫𝐸
𝒎𝒎𝑇 d𝛺, 𝑴𝜙 = ∫𝐸

𝒎𝝓𝑇 d𝛺. (61)

The method to compute the integral term 𝑯 is to partition 𝐸 into triangles (as shown in Fig. 3). The calculation of matrix 𝑴𝜙 will
be explained in detail later.

Once the matrix 𝜫0
𝑘∗ is determined, by considering the 𝐿2 projection 𝛱0

𝑘,𝐸 given in Eq. (56) and by using the relationship given
in Eq. (58), it follows

𝑰2 = ∫𝐸
(div𝑵𝑝)𝝓𝑇 d𝛺 = ∫𝐸

(div𝑵𝑝)
(

𝛱0
𝑘,𝐸𝝓

𝑇
)

d𝛺

= ∫𝐸
(div𝑵𝑝)𝝓𝑇𝜫0

𝑘d𝛺 = ∫𝐸
(div𝑵𝑝)𝒎𝑇

𝑘𝜫
0
𝑘∗d𝛺

= ∫𝐸
(div𝑵𝑝)𝒎𝑇

𝑘 d𝛺𝜫0
𝑘∗.

(62)

The numerical integration method of matrix 𝑰2 is similar to that of matrix 𝑮, both in the form of triangulation. Should be mentioned
that the kernel function (div𝑵𝑝𝒎𝑇

𝑘 ) is at most a polynomial of degree 𝑙 + 𝑘 − 1.
Now the key to calculating matrix 𝑩 becomes the calculation of projection matrix 𝜫0

𝑘∗, which depends on 𝑴𝜙 given in Eq. (60).
Unfortunately, the projection operator is not computable in the current function space. We will introduce the enhancement space
and discuss how to calculate the matrix 𝑴𝜙.

3.3. Enhancement space

Ahmad [12] modified the VEM space  to a local enhancement space 𝑘(𝐸). In that case the operator 𝛱0
𝑘 (𝐸) given in Eq. (56)

can be easily computed using 𝛱∇
𝑘 (𝐸) and the local d.o.f.s related to 𝑘(𝐸). We should consider the enhanced space

 (𝐸) ∶=
{

𝑤 ∈ ̃ (𝐸) ∶
(

𝑤 −𝛱∇𝑤 , 𝑞
)

= 0, 𝑞 ∈  ⧵
}

, (63)
7

𝑘 ℎ 𝑘 ℎ 𝑘 ℎ 𝐸 𝑘 𝑘−2



Computer Methods in Applied Mechanics and Engineering 417 (2023) 116555B.-B. Xu et al.

o

where the lifting space is

̃𝑘(𝐸) ∶=
{

𝑣 ∈ 1(𝐸) ∶ 𝑣|𝜕𝐸 ∈ 𝑘(𝜕𝐸), 𝛥𝑣 ∈ 𝑘(𝐸)
}

. (64)

and 𝛱∇
𝑘 is the elliptical projection. It is obvious that in the enhancement space 𝑘(𝐸), we have

∫𝐸
𝑤𝑞 d𝛺 = ∫𝐸

𝛱∇
𝑘 𝑤𝑞 d𝛺, 𝑞 ∈ 𝑘 ⧵𝑘−2. (65)

It is easy to find that the dimensional of ̃𝑘(𝐸) is

𝑁̃𝐸,𝑘
𝑉 ∶= dim̃𝑘(𝐸) = 𝑛𝐸𝑘 +

(𝑘 + 1)(𝑘 + 2)
2

, (66)

where 𝑛𝐸 is the number of edges of the polygon 𝐸. The additional degrees of freedom is written as

𝝌add = 1
|𝐸|

∫𝐸
𝑢𝑚𝛼d𝛺, 𝛼 =

𝑘(𝑘 − 1)
2

∼
(𝑘 + 1)(𝑘 + 2)

2
. (67)

Based on the additional degrees of freedom, the elliptic projector 𝛱̃∇
𝑘 in space ̃𝑘(𝐸) can be computed as

∫𝐸
𝑣𝑝d𝛺 = ∫𝐸

𝛱̃∇
𝑘 𝑣𝑝d𝛺, ∀𝑝 ∈ 𝑘 ⧵𝑘−2, (68)

By the moments of order 𝑘 − 1 and 𝑘, provided in Eq. (68) (actually using the approximation 𝝌(𝛱̃∇
𝑘 𝜙𝑗 ) = 𝝌(𝜙𝑗 ), 𝝓 is basis function

f space ̃𝑘(𝐸)), the matrix 𝑴𝜙 in Eq. (60) can be calculated and the matrix 𝑯 can be obtained as

𝑯 = 𝑴𝜙𝑫 (69)

Fortunately, for 𝑘 = 1, from Eq. (68), we deduce

∫𝐸
𝑣𝑝d𝛺 = ∫𝐸

𝛱̃∇
𝑘 𝑣𝑝d𝛺 = ∫𝐸

𝛱∇
𝑘 𝑣𝑝d𝛺, ∀𝑝 ∈ 0 ∪1, (70)

so based on the definition of 𝐿2 projection it follows

𝛱∇
1 = 𝛱0

1 . (71)

A similar rule can be found for 𝑘 = 2. So we have for 𝑘 = 1 and 𝑘 = 2,

𝜫0
𝑘 = 𝜫∇

𝑘 , 𝜫0
𝑘∗ = 𝜫∇

𝑘∗, 𝜫0
𝑘 = 𝑫𝜫0

𝑘∗ (72)

In this work, we only consider the cases of 𝑘 = 1 and 𝑘 = 2. Based on the relationship given in Eq. (72), the projection matrix 𝜫0
𝑘∗

used in Eq. (62) can be obtained directly from Eq. (27) together with the condition Eq. (28) (as demonstrated in Section 3.1). This
is another reason why we discuss the elliptic projection operator.

4. Stabilization-free virtual element discretization

Based on the above discussion, the 𝐿2 projection operator 𝛱0
𝑙,𝐸∇ ∶ 1(𝐸) →

[

𝑙(𝐸)
]2 can be computed so that the gradient of

the variable 𝑢ℎ can be approximated as follows

𝛱0
𝑙,𝐸∇𝑢ℎ = (𝑵𝑝)𝑇 𝜫𝑚𝒖̃, (73)

where 𝜫𝑚 the matrix representation of the operator 𝛱0
𝑙,𝐸 on the basis 𝑵𝑝, see Section 3.2. The projection operator 𝛱0

𝑙,𝐸 in Eq. (73)
is solved about the Laplace operator. As given in [41], the projection has good approximation properties and is suitable also as a
displacement space for the problems in solid mechanics. So in the next, the projection operator 𝛱0

𝑙,𝐸 will be used to solve problems
with the hyperelastic material undergoing large deformation. For the first step, we want to discuss the regular total Lagrangian
formulation of hyperelastic problems.

4.1. Total Lagrangian formulation of the hyperelastic problem

For hyperelastic problems, the virtual work is expressed as

 = ∫𝑉0
𝛿𝑬 ∶ 𝑺d𝑉0. (74)

The linearization of the virtual work is obtained from

𝛿 = ∫𝑉0
𝛿𝑬 ∶ 𝛿𝑺 d𝑉0 + ∫𝑉0

𝛿 (𝛿𝑬) ∶ 𝑺 d𝑉0, (75)

where

𝛿 (𝛿𝑬) = 1
2
𝛿
[

𝛿
(

𝑭 𝑇 ⋅ 𝑭 − 𝑰
)]

= 1
2
𝛿
[

𝛿𝑭 𝑇 ⋅ 𝑭 + 𝑭 𝑇 ⋅ 𝛿𝑭
]

𝑇 𝑇
(76)
8
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and

𝑫 = 𝜕𝒖
𝜕𝑿

, 𝑭 = 𝑰 +𝑫. (77)

This leads to the linearization of the virtual work Eq. (75) where

𝛿𝑺 = 𝜕𝑺
𝜕𝑬

∶ 𝛿𝑬 =  ∶ 𝛿𝑬, (78)

o that

𝛿 = ∫𝑉0
𝛿𝑬 ∶ 𝛿𝑺d𝑉0 + ∫𝑉0

𝑺 ∶
(

𝛿𝑫𝑇 ⋅ 𝛿𝑫
)

d𝑉0

= ∫𝑉0
𝛿𝑬 ∶  ∶ 𝛿𝑬d𝑉0 + ∫𝑉0

𝑺 ∶
(

𝛿𝑫𝑇 ⋅ 𝛿𝑫
)

d𝑉0.
(79)

is the tangential material tensor which is discussed in Section 2.2 for different hyperelastic models.

.2. Virtual element discretization

The Green–Lagrange strain tensor is written as

𝑬̂ =
[

𝐸𝑋𝑋 𝐸𝑌 𝑌 2𝐸𝑋𝑌
]𝑇 , (80)

n Voigt notation and the second Piola–Kirchhoff stress follows as

𝑺̂ =
[

𝑆𝑋𝑋 𝑆𝑌 𝑌 𝑆𝑋𝑌
]𝑇 , (81)

hen we have in matrix notation

𝑺 ∶ 𝛿𝑬 = 𝑺̂𝑇
⋅ 𝛿𝑬̂ = 𝛿𝑬̂𝑇

⋅ 𝑺̂, (82)

here

𝛿𝑬̂ =

⎡

⎢

⎢

⎢

⎢

⎣

𝐹11
𝜕𝛿𝑢
𝜕𝑋 + 𝐹21

𝜕𝛿𝑣
𝜕𝑋

𝐹12
𝜕𝛿𝑢
𝜕𝑌 + 𝐹22

𝜕𝛿𝑣
𝜕𝑌

𝐹11
𝜕𝛿𝑢
𝜕𝑌 + 𝐹12

𝜕𝛿𝑢
𝜕𝑋 + 𝐹21

𝜕𝛿𝑣
𝜕𝑌 + 𝐹22

𝜕𝛿𝑣
𝜕𝑋

⎤

⎥

⎥

⎥

⎥

⎦

. (83)

This is the key to expressing mechanical problems using gradients of variables derived from Poisson’s equation. Besides, we have
the incremental constitutive relationship

𝛿𝑺̂ = ̂ ⋅ 𝛿𝑬̂. (84)

Considering Eqs. (73) and (77) yields

𝑫 =

[ 𝜕𝑢
𝜕𝑋

𝜕𝑢
𝜕𝑌

𝜕𝑣
𝜕𝑋

𝜕𝑣
𝜕𝑌

]

=
[

(𝑵𝑝)𝑇 𝜫𝑚 [

𝒖̃ 𝒗̃
]

]𝑇
, 𝑭 = 𝑰 +𝑫. (85)

The Green–Lagrange strain tensor is calculated as

𝛿𝑬̂ =

⎡

⎢

⎢

⎢

⎢

⎣

𝐹11
𝜕𝛿𝑢
𝜕𝑋

𝐹12
𝜕𝛿𝑢
𝜕𝑌

𝐹11
𝜕𝛿𝑢
𝜕𝑌 + 𝐹12

𝜕𝛿𝑢
𝜕𝑋

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

𝐹21
𝜕𝛿𝑣
𝜕𝑋

𝐹22
𝜕𝛿𝑣
𝜕𝑌

𝐹21
𝜕𝛿𝑣
𝜕𝑌 + 𝐹22

𝜕𝛿𝑣
𝜕𝑋

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑨1 (𝑵𝑝)𝑇 𝜫𝑚𝛿𝒖̃ +𝑨2 (𝑵𝑝)𝑇 𝜫𝑚𝛿𝒗̃

=
[

𝑨1 (𝑵𝑝)𝑇 𝜫𝑚 𝑨2 (𝑵𝑝)𝑇 𝜫𝑚]
{

𝛿𝒖̃
𝛿𝒗̃

}

=
[

𝑨1 𝑨2
]

[

(𝑵𝑝)𝑇

(𝑵𝑝)𝑇

] [

𝜫𝑚

𝜫𝑚

]{

𝛿𝒖̃
𝛿𝒗̃

}

= 𝑨𝑵𝑇
𝑝 𝜫𝑚

{

𝛿𝒖̃
𝛿𝒗̃

}

,

(86)

where

𝑨1 =
⎡

⎢

⎢

⎣

𝐹11 0
0 𝐹12
𝐹12 𝐹11

⎤

⎥

⎥

⎦

, 𝑨2 =
⎡

⎢

⎢

⎣

𝐹21 0
0 𝐹22
𝐹22 𝐹21

⎤

⎥

⎥

⎦

, 𝑨 =
[

𝑨1 𝑨2
]

, (87)

𝑵𝑇
𝑝 =

[

(𝑵𝑝)𝑇
𝑝 𝑇

]

, (88)
9
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and

𝜫𝑚 =
[

𝜫𝑚

𝜫𝑚

]

. (89)

Defining vector 𝜽 as

𝜽 =
[

𝜕𝑢
𝜕𝑋

𝜕𝑢
𝜕𝑌

𝜕𝑣
𝜕𝑋

𝜕𝑣
𝜕𝑌

]𝑇
, (90)

we obtain

𝑺 ∶
(

𝛿𝑫𝑇 ⋅ 𝛿𝑫
)

= 𝛿𝜽𝑇 ⋅  ⋅ 𝛿𝜽, (91)

where

 =
[

𝑺
𝑺

]

, (92)

for two dimension problems.
Based on Eq. (73), the term 𝛿𝜽 is calculated as

𝛿𝜽 =
[

(𝑵𝑝)𝑇

(𝑵𝑝)𝑇

] [

𝜫𝑚

𝜫𝑚

]{

𝛿𝒖̃
𝛿𝒗̃

}

= 𝑵𝑇
𝑝 𝜫𝑚

{

𝛿𝒖̃
𝛿𝒗̃

}

(93)

Substituting Eq. (93) into Eq. (91), yields

𝑺 ∶
(

𝛿𝑫𝑇 ⋅ 𝛿𝑫
)

=
{

𝛿𝒖̃𝑇 𝛿𝒗̃𝑇
}

⋅
(

𝜫𝑇
𝑚 ⋅𝑵𝑝

)

⋅  ⋅
(

𝑵𝑇
𝑝 ⋅𝜫𝑚

)

⋅
{

𝛿𝒖̃
𝛿𝒗̃

}

(94)

4.3. Element stiffness matrix and internal force

For the total Lagrangian formulation, the linearized energy form given in Eq. (79) is considered as

𝛿 = ∫𝑉0
𝛿𝑬 ∶ 𝛿𝑺d𝑉0 + ∫𝑉0

𝑺 ∶
(

𝛿𝑫𝑇 ⋅ 𝛿𝑫
)

d𝑉0. (95)

Based on Eqs. (82), (84) and Eq. (91), the linearized energy form can be written as

𝛿 = ∫𝑉0
𝛿𝑬̂𝑇

⋅ ̂ ⋅ 𝛿𝑬̂d𝑉0 + ∫𝑉0
𝛿𝜽𝑇 ⋅  ⋅ 𝛿𝜽d𝑉0 (96)

Substituting Eqs. (86) and (93) into Eq. (96), yields

𝛿 =∫𝑉0

{

𝛿𝒖̃𝑇 𝛿𝒗̃𝑇
}

⋅
(

𝜫𝑇
𝑚 ⋅𝑵𝑝 ⋅𝑨𝑇 ) ⋅ ̂ ⋅

(

𝑨 ⋅𝑵𝑇
𝑝 ⋅𝜫𝑚

)

⋅
{

𝛿𝒖̃
𝛿𝒗̃

}

d𝑉0

+ ∫𝑉0

{

𝛿𝒖̃𝑇 𝛿𝒗̃𝑇
}

⋅
(

𝜫𝑇
𝑚 ⋅𝑵𝑝

)

⋅  ⋅
(

𝑵𝑇
𝑝 ⋅𝜫𝑚

)

⋅
{

𝛿𝒖̃
𝛿𝒗̃

}

d𝑉0

=
{

𝛿𝒖̃𝑇 𝛿𝒗̃𝑇
}

⋅ ∫𝑉0

(

𝜫𝑇
𝑚 ⋅𝑵𝑝 ⋅𝑨𝑇 ) ⋅ ̂ ⋅

(

𝑨 ⋅𝑵𝑇
𝑝 ⋅𝜫𝑚

)

d𝑉0 ⋅
{

𝛿𝒖̃
𝛿𝒗̃

}

+
{

𝛿𝒖̃𝑇 𝛿𝒗̃𝑇
}

⋅ ∫𝑉0

(

𝜫𝑇
𝑚 ⋅𝑵𝑝

)

⋅  ⋅
(

𝑵𝑇
𝑝 ⋅𝜫𝑚

)

d𝑉0 ⋅
{

𝛿𝒖̃
𝛿𝒗̃

}

.

(97)

Now the tangential element stiffness matrix can be obtained as

𝑲 𝑡
𝐾2 = 𝑲 𝑡1

𝐾2 +𝑲 𝑡𝜎
𝐾2, (98)

here

𝑲 𝑡1
𝐾2 = 𝜫𝑇

𝑚 ⋅ ∫𝑉0
𝑵𝑝 ⋅𝑨𝑇 ⋅ ̂ ⋅𝑨 ⋅𝑵𝑇

𝑝 d𝑉0 ⋅𝜫𝑚, (99)

𝑲 𝑡𝜎
𝐾2 = 𝜫𝑇

𝑚 ⋅ ∫𝑉0
𝑵𝑝 ⋅  ⋅𝑵𝑇

𝑝 d𝑉0 ⋅𝜫𝑚. (100)

The internal force follows from Eq. (10). By using the above-defined matrices, we arrive at

𝑭 int = 𝜫𝑇
𝑚 ⋅ ∫𝑉0

𝑵𝑝 ⋅𝑨𝑇 ⋅ 𝑺̂d𝑉0. (101)

It is easy to find that neither the global stiffness matrix nor the internal force vector requires additional stabilization terms. Then
ewton–Raphson iteration is used for the nonlinear equations. In each step, the second Piola–Kirchhoff stress at any integration
oint is calculated based on the constitutive model (as discussed in Section 2.2). Then, the Cauchy stress 𝝈 can be calculate as

𝝈 = 1 𝑭 ⋅ 𝑺 ⋅ 𝑭 𝑇 . (102)
10
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Fig. 4. Initial configuration of Cook’s membrane problem with different meshes.

Table 1
Maximum vertical displacement 𝑈𝑦 for different element division 𝑁 for regular elements.

𝑁 FEM SFVEM

Q1 Q2 𝑘 = 1, 𝑙 = 1 𝑘 = 1, 𝑙 = 2 𝑘 = 2, 𝑙 = 2 𝑘 = 2, 𝑙 = 3

2 8.00 10.17 8.00 7.84 10.31 10.24
3 9.53 10.29 9.53 9.51 10.34 10.31
4 10.10 10.34 10.10 10.10 10.36 10.34
5 10.28 10.35 10.28 10.28 10.36 10.36

5. Numerical examples

In this section some numerical examples are calculated by the proposed first- and second-order stabilization-free virtual element
ethod (SFVEM). The example problems undergo finite deformations leading to highly nonlinear responses. All the numerical

ests are solved by using the Newton–Raphson algorithm. The neo-Hookean hyperelastic model and constitutive equations are
iven in Section 2. All the computations are performed with self-written Matlab codes. The polygon meshes can be generated by
olyMesher [42] or converted from triangular meshes. To demonstrate the convergence and accuracy of the stabilization-free VEM,
convergence study is given in Appendix.

.1. Cook’s membrane problem

In this example, we consider the standard Cook’s membrane problem of a tapered cantilever beam, which was first proposed
n [43]. The structure is fixed at the left side and subjected to a constant distributed vertical load 𝑞𝑦 at the right side, as shown in

Fig. 4. The relevant dimensions are 𝐿 = 48, 𝐻1 = 44, 𝐻2 = 16.
The neo-Hookean hyperelastic model is selected with the constitutive parameters chosen as 𝜇 = 40 and 𝜆 = 100. Besides,

the distributed vertical load is given as 𝑞𝑦 = 4. Three different meshes including the regular mesh, polygonal mesh generated by
PolyMesher, and nonconvex mesh are considered as shown in Fig. 4. Solutions of linear and quadratic finite elements are included
for comparison.

In order to achieve the stabilization-free formulation, it is necessary to increase the order 𝑙 of the internal strain of the element,
that is, the order of matrix 𝑵𝑝. The relationship between the order 𝑙 and the number of sides of a polygon can be seen in Eq. (39).
Generally speaking, in order to avoid wasting calculations, it is necessary to select the appropriate order 𝑙 and the corresponding
number of integration points according to the number of element corner nodes. In this example, in order to facilitate calculation
and comparison, we selected the same polynomial order for different polygon elements. In each triangle used for integration, the
number of Gaussian integration points is 6.

To compare the performance of the proposed stabilization-free virtual element method, a convergence study is carried out based
on different uniformly refined meshes. We denote four different meshes defined by the parameter 𝑁 which corresponds to the
number of divisions. In this example, we select 𝑁 = 2, 3, 4, 5 which yields an equivalent number of elements 2𝑁 × 2𝑁 for regular

esh and polygonal mesh. The maximal vertical displacement 𝑈𝑦 in the 𝑦 direction of the upper right node of the membrane is
omputed for meshes corresponding to the element division 2𝑁 for regular and polygonal elements.

The values of maximal vertical displacement 𝑈𝑦 are given for different element divisions 𝑁 in Table 1 for regular mesh, Table 2
or polygon mesh, and Table 3 for nonconvex mesh. The associated convergence study for the maximum displacement 𝑈𝑦 is depicted
n Fig. 5.

Deformed configurations of the Cook’s membrane with the contour plot of stress 𝑠𝑥𝑦 obtained by SFVEM are shown in Fig. 6,
11

ig. 7, and Fig. 8 for regular meshes, polygonal meshes, and nonconvex meshes, respectively.
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Table 2
Maximum vertical displacement 𝑈𝑦 for different element division 𝑁 for polygon elements.

𝑁 FEM SFVEM

Q1 Q2 𝑘 = 1, 𝑙 = 1 𝑘 = 1, 𝑙 = 2 𝑘 = 2, 𝑙 = 2 𝑘 = 2, 𝑙 = 3

2 8.00 10.17 8.34 7.94 10.31 10.25
3 9.53 10.29 9.28 9.09 10.35 10.30
4 10.10 10.34 10.04 10.00 10.36 10.34
5 10.28 10.35 10.27 10.25 10.37 10.36

Table 3
Maximum vertical displacement 𝑈𝑦 for different element division 𝑁 for nonconvex elements.

𝑁 FEM SFVEM

Q1 Q2 𝑘 = 1, 𝑙 = 1 𝑘 = 1, 𝑙 = 2 𝑘 = 2, 𝑙 = 2 𝑘 = 2, 𝑙 = 3

2 8.00 10.17 7.68 7.26 10.26 10.22
3 9.53 10.29 9.42 9.22 10.33 10.31
4 10.10 10.34 10.08 10.01 10.35 10.34
5 10.28 10.35 10.27 10.25 10.36 10.35

Fig. 5. Max vertical displacement 𝑈𝑦 for different element division 𝑁 , (a) regular elements, (b) polygon elements, (c) nonconvex elements.

Fig. 6. Deformed shape and contour plot of the stress 𝑠𝑥𝑦 for different meshes with regular elements (obtained by SFVEM with 𝑘 = 2, 𝑙 = 3).

5.2. Punch problem

In this example, a rectangular plate subjected to a vertically distributed uniform load 𝑝𝑦 is considered. The problem undergoes
severe deformations and was selected as a test to demonstrate the robustness of the stabilization-free virtual element method. The
top and the left side of the rectangle are fixed in the horizontal direction, while the bottom side of the rectangle plane is fixed in
the vertical direction. The geometric model and dimensions are given in Fig. 9.

In this example, the uniformed load is given as 𝑝𝑦 = 800 which is applied at the top left half of the plate. Constitutive parameters
for the compressible case are given as 𝜆 = 400.75 and 𝜇 = 92.5. The model size is given as 𝐿 = 𝐻 = 1. The problem was calculated
using three different meshes and compared with finite element results. The polygonal mesh (generated by the PolyMesher), regular
mesh, and nonconvex mesh are depicted in Fig. 10.
12
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Fig. 7. Deformed shape and contour plot of the stress 𝑠𝑥𝑦 for different meshes with polygon elements (obtained by SFVEM with 𝑘 = 2, 𝑙 = 3).

Fig. 8. Deformed shape and contour plot of the stress 𝑠𝑥𝑦 for different meshes with nonconvex elements (obtained by SFVEM with 𝑘 = 2, 𝑙 = 3).

Fig. 9. Schematic diagram and dimensions of the punch problem model.

Fig. 10. Two different types of computing meshes.
13
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Fig. 11. Deformed shape and contour plot of the vertical displacements for different meshes with regular elements.

Fig. 12. Deformed shape and contour plot of the vertical displacements for different meshes with polygon elements.

Fig. 13. Deformed shape and contour plot of the vertical displacements for different meshes with nonconvex elements.

Table 4
Vertical displacement 𝑈𝑦 of point A for different element division 𝑁 for different meshes (𝑙 = 2 for 𝑘 = 1 and 𝑙 = 3 for 𝑘 = 2).

𝑁 FEM SFVEM(polygon) SFVEM(regular) SFVEM(nonconvex)

Q1 Q2 𝑘 = 1 𝑘 = 2 𝑘 = 1 𝑘 = 2 𝑘 = 1 𝑘 = 2

2 −0.784 −0.766 −0.779 −0.767 −0.779 −0.766 −0.754 −0.767
3 −0.776 −0.766 −0.778 −0.767 −0.778 −0.765 −0.766 −0.764
4 −0.770 −0.765 −0.768 −0.766 −0.767 −0.765 −0.765 −0.768
5 −0.767 −0.765 −0.766 −0.765 −0.766 −0.765 −0.765 −0.765

Similar to the previous example, a convergence study is carried out. We denote four different meshes by the parameter 𝑁 which
orresponds to the number of divisions. In this example, we select 𝑁 = 2, 3, 4, 5 so that the equivalent number of elements is
× 2𝑁 × 2𝑁 for different meshes. For comparison, the finite element method with quadrilateral Q1 and Q2 elements is selected (Q1
lement denotes the linear element and Q2 element is the serendipity element). According to the calculation results of example 1,
he parameters can be selected as 𝑙 = 2 for 𝑘 = 1 and 𝑙 = 3 for 𝑘 = 2. In each triangle used for integration, the number of Gaussian
ntegration points is 6.

For different types of meshes and different densities, the deformed shape and contour plots of the vertical displacements are
iven for different meshes with regular elements in Fig. 11, polygonal elements in Fig. 12, and nonconvex elements in Fig. 13,
espectively.

The values of the vertical displacements 𝑈𝑦 of point A (illustrated in Fig. 9) are given for different element divisions 𝑁 in Table 4
or regular mesh, polygonal mesh, and nonconvex mesh, respectively. The convergence of the vertical displacement 𝑈𝑦 of point A is
emonstrated in Fig. 14. For the regular mesh (the regular meshes are the same as the meshes used in FEM), the solution is similar
o the solutions obtained by the FEM. This shows that the stabilization-free VEM yields very similar results to finite elements when
ealing with regular meshes (quadrilateral elements). Besides, the stabilization-free VEM can use polygonal elements, so it is more
uitable for complex geometries. For nonconvex meshes, the stabilization-free VEM can still get accurate results, but the stability is
ot as good as polygonal (convex) and quadrangular meshes, especially for second formulation.

In the next, we tested the calculation results of first-order FEM and first-order SFVEM under large loads (𝑞𝑦 = 2560, quadrilateral
lements are selected for FEM and SFVEM (𝑙 = 3)). As given in Fig. 15, we find that SFVEM can obtain better result under current
ssumptions. It should be noted that for second-order elements, whether it is FEM or SFVEM, the calculation does not converge.
14
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Fig. 14. Vertical displacement 𝑈𝑦 of point A for different element division 𝑁 for different types of elements.

Fig. 15. Deformed shape and contour plot of the vertical displacements for 𝑞𝑦 = 2560, obtained by FEM and SFVEM for 𝑘 = 1.

6. Conclusion

In this paper, a first- and second-order stabilization-free virtual element method is derived and extended for finite strain
applications. The main idea of this method is to modify the virtual element space (enlarged VEM space) to allow the computation of
higher-order polynomial approximations of the gradient field. We chose the degree 𝑙 of vector polynomials 𝑵𝑝 for the interpolation
of gradient (strain) in each polygon element such that the element stiffness has the correct rank. To construct the matrix form for the
elastic and hyper-elastic problems, we start from the bilinear form of Poisson’s equation, and obtain an expression for computing the
gradient of any variable 𝛱0

𝑙,𝐸∇𝑢 = (𝑵𝑝)𝑇𝜫𝑚𝒖̃. The 𝐿2 projection operator 𝜫𝑚 can be computed by considering the enhancement
space, which leads to the virtual element discretization. Compared with the conventional VEM, the stiffness matrix is obtained
directly without any stable item. The convergence of the proposed method is studied for the Poisson equation and similar results
are obtained compared to conventional VEM. Benchmark examples are used to demonstrate the accuracy and flexibility of the
SFVEM for hyper-elastic problems. In the future, the discretization scheme can be easily extended to other nonlinear problems since
no stabilization term is required.
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Fig. A.16. Unstructured polygonal meshes with different sizes.

Fig. A.17. Numerical solutions obtained by the stabilization-free VEM with different meshes.

Appendix. Convergence study

In order to show the correction of the derived stabilization scheme and to demonstrate the achieved orders of the new approach,
we apply the stabilization-free virtual element method and traditional virtual element method to the Poisson equation. The choice
of 𝑙 (given in Section 3.2 for 𝐿2 projection) is an open question that depends on the number of vertices of element 𝐸. In [39], by
considering the element eigenvalue problem for plane elasticity, a sufficient inequality is given by

2𝑙 − 2𝑘 + 5 ≥ 𝑛𝐸 . (A.1)

Some necessary mathematics demonstrations and numerical examples have been given in the Refs. [37–39]. Besides, the eigenvalue
analysis of individual elements used to check the element stability can be found in [39]. So in this article, we directly use their
conclusions without doing cumbersome proofs.

To test convergence, we examine the errors using the 𝐿2 and 𝐻1 norms. The discrete measures are given as

‖𝒖 − 𝒖ℎ‖𝐿2 =
√

∑

𝐸∈
‖𝒖 −𝜫𝑘,𝐸𝒖ℎ‖2, (A.2)

‖𝒖 − 𝒖ℎ‖𝐻1 =
√

∑

𝐸∈
‖∇𝒖 − ∇𝜫𝑘,𝐸𝒖ℎ‖2. (A.3)

Let 𝛺 = (0, 1)2, the Poisson equation is considered with the formulation written as

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

=
𝑥2 + 𝑦2

(𝑥𝑦 + 1)2
+ 5 sin

(

2𝑥 + 1
2

)

cos
(

𝑦 + 3
10

)

, (A.4)

and the analytical solution is given by

𝑢(𝑥, 𝑦) = sin(2𝑥 + 0.5) cos(𝑦 + 0.3) + log(1 + 𝑥𝑦). (A.5)

The boundary is fully constrained based on the analytical solution.
In this example, we solve the Poisson equation on five different meshes generated by PolyMesher with size ℎ (as shown in

Fig. A.16 for three different meshes). The conventional VEM and stabilization-free VEM (SFVEM) are selected for comparison. In
conventional VEM, the stabilization term is needed and the expression is selected as

𝑲𝑠 =
(

𝑰 −𝜫∇
𝑘
)𝑇 (

𝑰 −𝜫∇
𝑘
)

. (A.6)

In the stabilization-free VEM, the stabilization term is not required. Some contour plots of the numerical solutions obtained by the
proposed method are given in Fig. A.17.

Next, we verify and compare the convergence of different types of virtual element methods. As described in the previous part,
the choice of 𝑙 in the stabilization-free VEM should follow the rule given in Eq. (A.1). Hence we compare the solutions obtained by
16
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t

Table A.5
The 𝐿2 norm for conventional VEM and stabilization-free VEM (SFVEM) for 𝑘 = 1.
ℎ VEM SFVEM(𝑙 = 1) SFVEM(𝑙 = 2) SFVEM(𝑙 = 3)

1.768e−01 1.001e−02 1.021e−02 1.001e−02 8.130e−03
1.250e−01 4.955e−03 5.058e−03 4.973e−03 3.694e−03
8.839e−02 3.024e−03 3.082e−03 3.038e−03 2.153e−03
6.250e−02 1.371e−03 1.396e−03 1.379e−03 9.491e−04
4.419e−02 6.114e−04 6.223e−04 6.153e−04 4.133e−04

Table A.6
The 𝐻1 norm for conventional VEM and stabilization-free VEM (SFVEM) for 𝑘 = 1.
ℎ VEM SFVEM(𝑙 = 1) SFVEM(𝑙 = 2) SFVEM(𝑙 = 3)

1.768e−01 1.469e−01 1.469e−01 1.468e−01 1.486e−01
1.250e−01 1.076e−01 1.077e−01 1.076e−01 1.096e−01
8.839e−02 7.678e−02 7.677e−02 7.677e−02 7.746e−02
6.250e−02 5.161e−02 5.161e−02 5.161e−02 5.196e−02
4.419e−02 3.645e−02 3.646e−02 3.645e−02 3.664e−02

Table A.7
The 𝐿2 norm for conventional VEM and stabilization-free VEM (SFVEM) for 𝑘 = 2.
ℎ VEM SFVEM(𝑙 = 2) SFVEM(𝑙 = 3) SFVEM(𝑙 = 4)

1.768e−01 1.372e−04 1.352e−04 1.365e−04 1.593e−04
1.250e−01 5.048e−05 5.063e−05 5.048e−05 5.689e−05
8.839e−02 1.825e−05 1.815e−05 1.818e−05 1.929e−05
6.250e−02 5.945e−06 6.055e−06 5.945e−06 6.389e−06
4.419e−02 2.102e−06 2.140e−06 2.102e−06 2.232e−06

Table A.8
The 𝐻1 norm for conventional VEM and stabilization-free VEM (SFVEM) for 𝑘 = 2.
ℎ VEM SFVEM(𝑙 = 2) SFVEM(𝑙 = 3) SFVEM(𝑙 = 4)

1.768e−01 6.433e−03 6.436e−03 6.427e−03 6.737e−03
1.250e−01 3.108e−03 3.113e−03 3.106e−03 3.232e−03
8.839e−02 1.539e−03 1.542e−03 1.537e−03 1.579e−03
6.250e−02 7.633e−04 7.645e−04 7.630e−04 7.831e−04
4.419e−02 3.795e−04 3.801e−04 3.793e−04 3.881e−04

Fig. A.18. Numerical solutions obtained by the stabilization-free VEM with different meshes.

he conventional VEM and the stabilization-free VEM with different parameters 𝑙 (for 𝑘 = 1, 𝑙 is selected as 𝑙 = 1, 2, 3 and for 𝑘 = 2,
𝑙 is selected as 𝑙 = 2, 3, 4 in this example). The 𝐿2 and 𝐻1 norm defined in Eqs. (A.2) and (A.3) are selected with the solutions given
in Tables A.5–A.8. The 𝐿2 and 𝐻1 convergence curves of the stabilization-free VEM are depicted in Fig. A.18.

From the above data, it can be observed that the accuracy of the results obtained by SFVEM is very close to the accuracy obtained
by traditional VEM (not only the magnitude is the same, but also the convergence rate is basically the same, even if 𝑙 does not meet
the given conditions). This shows that the proposed SFVEM is accurate and leads to similar results as provided by the traditional
VEM.
17
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