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Abstract
In this paper, a novel first- and second-order stabilization-free virtual element
method is proposed for two-dimensional elastoplastic problems. In contrast to
traditional virtual element methods, the improved method does not require
any stabilization, making the solution of nonlinear problems more reliable.
The main idea is to modify the virtual element space to allow the computa-
tion of the higher-order L2 projection operator, ensuring that the strain and
stress represent the element energy accurately. Considering the flexibility of the
stabilization-free virtual element method, the elastoplastic mechanical prob-
lems can be solved by radial return methods known from the traditional finite
element framework. J2 plasticity with hardening is considered for modeling the
nonlinear response. Several numerical examples are provided to illustrate the
capability and accuracy of the stabilization-free virtual element method.

K E Y W O R D S

nonlinear, plasticity, stabilization-free, virtual element method

1 INTRODUCTION

Engineering problems are typically governed by a set of partial differential equations (PDEs) along with specified bound-
ary conditions. In order to simulate and analyze the above problems, numerous numerical methods have been proposed,
including finite element method (FEM), finite volume method (FVM), boundary element method (BEM), and meshless
methods (MLMs). Among them, the finite element method is the most widely used in the field of computational solid
mechanics and based on a sound mathematical framework. Standard finite element discretizations have limits when
applied to complex geometries. Isogeometric analysis1 is a technique that directly performs finite element calculations on
complex geometric models. In addition, polygonal finite element is also a new technology needed to deal with complex
geometric models.

Polygonal finite element methods have gained increasing attention due to their ability to allow more flexible com-
putational domain discretizations. Some of the techniques can be listed as Polygonal Finite Element Method (PFEM),2,3

discontinuous Galerkin methods (DG),4,5 mimetic finite difference methods (MFD),6–8 and some other methods like the
extended FEMs (XFEM)9 and generalised FEMs (GFEM).10 The scaled boundary finite element method (SBFEM)11–13
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is another special type of polygonal finite element methods, which significantly differs from the above polygonal finite
element methods in the process of constructing variational schemes.

In the past decade, the virtual element method proposed in References 14,15 has received increasing attention due to
its ability to handle polygon or polyhedral elements of convex and non-convex shape. The virtual element method does
not require the construction of interpolation functions (shape functions) for polygonal (polyhedral) elements and also
avoids complex domain integration in the element.16 Due to these characteristics, the virtual element method has strong
advantages in dealing with hanging node elements, crack growth problems17,18 and adaptive mesh refinement.19 Despite
its short history beginning in 2013, the VEM has been developed for the linear elastic problems,16,20–23 hyperelastic materi-
als at finite deformations,24–27 contact problems,28–31 elastodynamics problems,32–35 finite elastoplastic deformations,36–38

phase field modeling problems39,40 and for eigenvalue problems.41,42

In the VEM, the variable u is replaced by its projection Πu onto a polynomial space. As a result, the stiffness matrix
becomes rank-deficient and a stabilization term is required to avoid the development of the zero-energy hourglass modes.
Some stabilization techniques have been proposed for linear and nonlinear problems.14,24,25,43 However, the presence of
stabilization terms requires the introduction of stability parameters which eventually can bias the approximate solution.
Therefore, it is desirable to construct a new VEM formulation that does not require any stabilization term. An enhanced
VEM formulation was proposed in Reference 44 that can bypass the need for stabilization terms for the first-order VEM
(k = 1). Besides, a self-stabilized virtual element formulation was proposed by Andrea43 for 2D 4-node elements based on
the Hu-Washizu variational approach. Recently in References 45,46, a first-order stabilization-free virtual element method
(SFVEM) was introduced for the Poisson equation. The basic idea is to modify the first-order virtual element space to
allow the computation of a higher-order L2 projection of the gradient.47 The well-posedness was proven in References
45,48 and the discrete problem can be solved without a stabilizing bilinear form. According to these developments, the
stabilization-free virtual element method has been extended to the Laplacian eigenvalue problem,49 linear plane elasticity
in References 47,50, and 3D elasticity in Reference 51. All the above contributions are considered linear problems. Since
stabilization terms are not required for the stabilization-free formulation, an extension of the method to the fields of non-
linear problems is advantageous. Before this, the author tried to apply this stabilization-free format to two-dimensional
hyperelasticity problems.52

In addition to the problem of hyperelasticity, classical small-strain elastoplasticity is of special significance as it finds
extensive application in engineering analysis and represents an important topic in the nonlinear continuum mechan-
ics of solids. In essence, elastoplastic problems can be characterized by quasistatic models with various yield criteria,
flow rules or internal variables. Considering the ability of the virtual element method to handle complex problems, the
stabilization-free virtual element method (SFVEM) combined with the radial-return mapping algorithm will be devel-
oped for elastoplastic analysis. Considering the complexity of the elastoplastic problem, we only consider the simpler
elastoplastic constitutive model in this work.

In this paper, we provide a computational framework of SFVEM for 2D elastoplastic problems, including the calcula-
tion of the high-order L2 projection matrix𝚷m for k = 1, 2 and the associated approximate expressions for gradients. The
framework does not require any stabilization terms and can be extended to other nonlinear problems. For small-strain
elastoplastic, the Newton-Raphson (N-R) method will be used with the following standard computational procedure

(1) implicit time-discretization of the plastic evolution equation;
(2) space discretization by the stabilization-free virtual element method;
(3) solution of a resulting discretized system by the Newton method.

The paper is organized as follows. The necessary theoretical basis for elastoplastic problems is summarized in
Section 2. The basic principles of the stabilization-free virtual element method and the calculation of different projection
operators are given in Section 3. Next, the stabilization-free virtual element formulation for the elastoplastic problem is
provided in Section 4. Some numerical examples are presented and discussed in Section 5. Finally, the paper closes with
some concluding remarks in Section 6.

2 PROBLEM FORMULATION

In this section, we consider an elastoplastic body occupying a bounded domain Ω ∈ R2 with boundary Γ = 𝜕Ω = ΓD ∪
ΓN and ΓD ∩ ΓN = ∅. ΓD is the Dirichlet boundary for prescribed displacements uD ∈ 1(Ω;R2), ΓN is the Neumann
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boundary for prescribed tractions fT ∈ 2(ΓN ;R2). At any point x ∈ Ω, the total strain can be decomposed into elastic 𝜺e

and plastic parts 𝜺e when only small strains are present

𝜺 = 𝜺e + 𝜺p
. (1)

A free energy per unit of volume53 can be defined as

(𝜺e
,𝜶) =e(𝜺e) +v(𝜶), (2)

wheree(𝜺e) is elastic strain energy function andv(𝜶) is a potential function (plastic potential energy) for the hardening
variables 𝜶. The partial derivative of yields

𝝈 = 𝜕(𝜺e
,𝜶)

𝜕𝜺
e , q = −𝜕(𝜺e

,𝜶)
𝜕𝜶

, (3)

where 𝝈 is the stress and q is the back stress. Then, we defined volumetric and deviatoric parts of strain and stress

e = 𝜺 − 1
3

tr(𝜺)I, 𝜀V =
1
3

tr(𝜺), (4)

s = 𝝈 − 1
3

tr(𝝈)I, p = 1
3

tr(𝝈), (5)

where I ∈ R2×2 is the second order unit tensor.
For small strains, the elastic strain energy function has the form as

e =
1
2
𝜺

e ∶  ∶ 𝜺e
. (6)

where  denotes the fourth-order elastic tensor which has the form as

 = KI ⊗ I + 2𝜇Idev, (7)

where the parameters K and 𝜇 are the elastic bulk and shear moduli, respectively, Idev is defined as Idev = I4 − 1
3

I ⊗ I, I4
is the fourth-order tensor which can be written as

(I4)ijkl =
1
2
(𝛿ik𝛿jl + 𝛿il𝛿jk). (8)

Besides, the plastic potential energy can be written as

v =
1
2
̂H�̂�

2 + 1
3

H||𝜶||2, (9)

where �̂� and 𝜶 are the isotropic and kinematic hardening variables, respectively. Substituting Equations (9) into (3),
we have

q = −2
3

H𝜶, q̂ = − ̂H�̂�. (10)

For linear isotropic and kinematic hardening, the yield function is given by

f (s,q, q̂) = ||s − q|| −
√

2
3
(𝜎0

Y − q̂) ≤ 0, (11)

where 𝜎

0
Y is the initial yield stress, s is the deviatoric stress tensor and s = 2𝜇e, 𝜼 = s − q is the shifted stress,

||𝜼|| =
√
𝜼 ∶ 𝜼.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7490 by D
alian U

niversity O
f, W

iley O
nline L

ibrary on [15/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 22 XU et al.

For associative J2 plasticity, we have

ėp = 𝜆

𝜕f
𝜕s

, �̇� = 𝜆

𝜕f
𝜕q

,
̇
�̂� = 𝜆

𝜕f
𝜕q̂

, (12)

where 𝜆 is a scalar that determines the size of the plastic strain increment. Using the flow condition (11), the derivative
of f yields

𝜕f
𝜕s
=

s − q
||s − q||

=
𝜼

||𝜼||
=∶ N,

𝜕f
𝜕q

= −N. (13)

Then the evolution equations become

ėp = 𝜆N, �̇� = −𝜆N,
̇
�̂� = 𝜆

√
2
3
. (14)

The Karush-Kuhn-Tucker (KKT) condition reads as

𝜆 ⩾ 0, f ⩽ 0, 𝜆f = 0. (15)

3 STABILIZATION-FREE VIRTUAL ELEMENT METHOD

3.1 Mesh assumptions and polynomial basis

Let h be a family of partitions of the domain Ω into a set of non-overlapping arbitrary polygonal elements, h be the set
of edges e of h. For each element E ∈ h with nE edges, the diameter is hE and the area is |E|. We assume that h satisfies
the mesh assumptions for VEM54 such that

• every polygonal element E ∈ h is star-shaped with respect to a ball of radius ⩾ ChE;
• every edge e ∈ 𝜕E with the length he satisfies he > ChE,

where C is a suitable positive constant. It should be noted that different from FEM, VEM allows for strongly distorted
elements since no geometry mapping is required. Some typical polygonal elements are shown in Figure 1.

Let Pk(E) be the function space on E that consists of all polynomials of order ≤ k. The dimension of the function
space is

NP ∶= dim(Pk(E)) =
(k + 1)(k + 2)

2
. (16)

F I G U R E 1 First order polygonal element used in VEM.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7490 by D
alian U

niversity O
f, W

iley O
nline L

ibrary on [15/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



XU et al. 5 of 22

Then we can define the set of scaled monomialsk(E) of degree equal to NP as

k(E) ∶=
{(

x − xE

hE

)s

, |s| ≤ k
}

, (17)

where xE are the cartesian coordinates of the centroid of E, |s| ∶= s1 + s2 and xs ∶= xs1
1 xs2

2 . Besides, we still define the set
of scaled monomials∗

k(E) as


∗
k(E) ∶=

{(
x − xE

hE

)s

, |s| = k
}

. (18)

Should be mentioned that the scaled monomials are used as the basis for Pk(E) to ensure all degrees of freedom scale like
1 concerning the element size hE.55 Besides,k(E) is the basis for Pk(E), m

𝛼
is used to refer to an element ofk(E). The

scaled monomials setk(E) is used in the virtual element method for scalar as well as vector problems.

3.2 Virtual element space and1 projection operator

The virtual element space can be defined as

k(E) ∶=
{

uh ∈ H1(E) ∶ Δu ∈ Pk−2(E),u|
𝜕E = Bk(𝜕E)

}
, (19)

where Pk is a polynomial with the highest order not exceeding k,

Bk(𝜕E) ∶= {uh ∈ C(𝜕E) ∶ ue ∈ Pk(e), e ⊂ 𝜕E}. (20)

In k(E), the degrees of freedom are selected as

• the values of uh at the vertices;
• the values of uh at k − 1 uniformly spaced points on each edge e;
• for k > 1, the moments

1
|E| ∫E

uhm
𝛼
dΩ, ∀m

𝛼
∈k−2(E).

Easy to find that Bk(𝜕E) is a linear space of dimension nE + nE(k − 1) = nEk. Since a polynomial of order k requires (k +
1)(k + 2)∕2 parameters and m

𝛼
∈k−2(E) for the internal degrees of freedom, there are another k(k − 1)∕2 parameters

to describe a polygonal of order k − 2 in the element. Then the dimension of k(E) can be obtained as

NE ∶ = dim(k(E))

= nE + nE(k − 1) + k(k − 1)
2

= nEk + k(k − 1)
2

(21)

where nE is the number of edges, the last term of Equation (21) corresponds to the dimension of polynomials of degree
≤ k − 2 in two dimensions (Δu ∈ Pk−2(E)).

The projection operator is selected as the projector Π∇k (E), which is defined as

Π∇k (E) ∶ k(E) → Pk(E),uh → Π∇k u, (22)

and the projection Π∇k defined for uh ∈ k(E) can be calculated by the orthogonality condition,

∫E
∇Π∇k uh ⋅ ∇p dΩ =

∫E
∇uh ⋅ ∇p dΩ, (23)

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7490 by D
alian U

niversity O
f, W

iley O
nline L

ibrary on [15/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 22 XU et al.

where ∀uh ∈ k(E), ∀p ∈ Pk(E). In order to define Π∇k uniquely, we should add the following constraints

P0
(
Π∇k uh − uh

)
= 0. (24)

A suitable choice of constraint is

P0(uh) ∶=
1
|E| ∫E

uhdΩ. (25)

Note that this projection in (23) is different from Reference 47 where the elastic energy enters the projection. Here, for
the nonlinear case, we only project the gradient, this obtains a formulation that is valid for any constitutive model.

Considering the Green formula, Equation (23) can be deduced as

∫E
∇Π∇k uh ⋅ ∇p dΩ = −

∫E
uh ⋅ Δp dΩ +

∫
𝜕E

uh ⋅
𝜕p
𝜕n

dΓ. (26)

To solve Equation (26), we can expand the projection operator Π∇k in different bases ∀m
𝛼
∈k,∀𝜙j ∈ k as

Π∇k 𝜙i =
NP∑

𝛼=1
a
𝛼,im𝛼

=
NE∑

j=1
sj,i𝜙j, (27)

where NP ∶= dim(k). Equation (27) can be written in the following matrix form

Π∇k 𝝓
T = mT𝚷∇k∗ = 𝝓

T𝚷∇k . (28)

Substituting Equations (28) into (26), we obtain

∫E
∇m ⋅ ∇Π∇k 𝝓

T dΩ = −
∫E
Δm ⋅ 𝝓T dΩ +

∫
𝜕E
(∇m ⋅ n)𝝓TdΓ. (29)

We can define a matrix D with

(D)j,𝛼 = dofj(m𝛼
) (30)

for re-expressing polynomials in terms of the basis of k(E), then we have

mT = 𝝓TD, 𝚷∇k = D𝚷∇k∗. (31)

With Equations (28) and (31), Equation (29) can be re-formulated as

∫E
∇m ⋅ ∇mTdΩ𝚷∇k∗ = −∫E

Δm ⋅ 𝝓T dΩ +
∫
𝜕E
(∇m ⋅ n)𝝓TdΓ, (32)

which then leads to the matrix form

G∇𝚷∇k∗ = B∇, (33)

where the size of G∇ is NP × NP and the size of B∇ is NE × NP. The constraint condition should be considered during
the calculation of B and G. Given the definition of degree of freedom, it is possible to compute matrix B∇. It should be
mentioned that it is not necessary to calculate matrix G∇ because G∇ = DB∇.

3.3 L2 projection operator

The core idea of VEM is to use local approximation spaces whose functions are solutions to suitable differential problems.
Besides, a suitable stabilization term should be added since the projection Π∇k∗ does not lead to an element matrix with
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full rank. For elastoplastic problems, the computation of the projection operators and the construction of stabilization
terms is complex and problem-depending. In this work, a stabilization-free VEM is proposed and extended for use in
elastoplastic problems.

To obtain the discrete bilinear form for the stabilization-free VEM, we define the L2 projection operator Π0
k,E of the

variable field and 𝚷0
l,E∇ of the gradient of the variable field, which is defined as

Π0
k,E ∶ 

1(E) → Pk(E), (34)

𝚷0
l,E∇ ∶ 

1(E) →
[
Pl(E)

]2
, (35)

where l ∈ N is a parameter defining the order of the necessary polynomial space for sufficient stabilization which depends
on the order k and the number of edges nE. As given in Reference 48, the relationship

(k + l)(k + l + 1) ≥ knE + k(k + 1) − 3 (36)

holds. Another relationship for the elastic problem is formulated based on an eigenvalue analysis50,52 with

nE ≤ 2l − 2k + 5. (37)

By representing the virtual variable field u and the approximated gradient∇u in terms of the basis functions, we can write

u ≈ uh = 𝝓Tũ, (38)

∇u ≈ ∇uh = (Np)T𝜖, (39)

where
∼
□ represents a vector; 𝝓 is a vector of the basis function in k(E) and the length is NE; ũ ∈ RNE ; 𝜖 ∶= ∇uh,and Np

is a matrix (size l(l + 1) × 2) which contains the polynomial basis

(
Np)T ∶=

[
1 𝜉 𝜂 · · · 𝜂l 0 0 0 · · · 0
0 0 0 · · · 0 1 𝜉 𝜂 · · · 𝜂l

]T

=

[
mT

l 0T

0T mT
l

]

.

(40)

In order to solve the L2 projection operator for variable gradients 𝚷0
l,E∇, we let uh ∈ 1(E) satisfy the following

orthogonality condition

∫E
pT𝚷0

l,E∇uh dΩ =
∫E

pT∇uh dΩ, (41)

where p ∈ [Pl]2. Considering using integrals by parts and Gaussian divergence theorem, the right side of Equation (41)
becomes

∫E
pT∇uh dΩ =

∫
𝜕E

(
pTn
)

uhdΓ −
∫E
(divp)uh dΩ, (42)

where n is the edge normal vector. Substituting Equations (42) into (41), yields

∫E
pT𝚷0

l,E∇uh dΩ =
∫
𝜕E

(
pT ⋅ n

)
uhdΓ −

∫E
(divp)uh dΩ, ∀p ∈ [l(E)]2. (43)

As given in Reference 16, we denote by 𝚷m the operator 𝚷0
l,E∇ expressed as a matrix, thus the projected gradient

results in

𝚷0
l,E∇u =

(
Np)T𝚷mũ. (44)
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8 of 22 XU et al.

Similar to the gradient of variable, we can expand p in terms of polygonal basis in [Pl]2 as

p =
(

Np)Tp̃. (45)

Substituting Equations (44) and (45) into (43), lead to

p̃T
∫E

Np(Np)TdΩ𝚷mũ = p̃T
∫
𝜕E

(
Np ⋅ n

)
𝝓

TdΓũ − p̃T
∫E

(
divNp)

𝝓
TdΩũ. (46)

Since this is true for all ũ and p̃, the above Equation (46) can be written as

∫E
Np(Np)TdΩ𝚷m =

∫
𝜕E

(
Np ⋅ n

)
𝝓

TdΓ −
∫E

(
divNp)

𝝓
TdΩ. (47)

If the right side of Equation (47) is computable, then the projection matrix𝚷m can be calculated by

𝚷m = G−1B, (48)

where

G ∶=
∫E

Np(Np)TdΩ, (49)

B ∶=
∫
𝜕E

(
Np ⋅ n

)
𝝓

TdΓ −
∫E

(
divNp)

𝝓
TdΩ. (50)

For matrix G, we only need to determine integrals of the form

∫E
𝜉

p
𝜂

qdΩ for 0 ≤ p + q ≤ 2l (51)

which can be calculated by partitioning E into a set of triangles 𝒯n (as shown in Figure 2) and adopting a Gauss
quadrature rule.

Compared with Equation (33), the calculation of matrix B reveals the major difference between the proposed
stabilization-free VEM and the conventional VEM. This calculation is based on the following definitions

I1 ∶=
∫
𝜕E

(
Np ⋅ n

)
𝝓

TdΓ, (52)

Gauss integral point

F I G U R E 2 Triangulation of polygonal element.
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XU et al. 9 of 22

I2 ∶=
∫E

(
divNp)

𝝓
TdΩ. (53)

The basis function 𝝓 is known at the polygonal boundary of the element 𝜕ΩE which can be described by a polynomial
of degree k. Thus the term I1 can be calculated by the one-dimensional Gaussian integral as

I1 =
∑

e∈𝜕E
∫e

Npn𝝓TdΓ =
∑

e∈𝜕E

|e|
2 ∫

1

−1
Npn𝝓Tds. (54)

Next is the calculation of I2. To do this, let us revisit the definition of L2 projection for scalar given in Equation (34),
then we have the following orthogonality condition

∫E
Π0

k,Euhp dΩ =
∫E

uhp dΩ,∀uh ∈ k(E),∀p ∈ Pk(E). (55)

Considering the basis 𝝓 and m ∈k for function space k(E) and Pk(E), Equation (55) can be written as

∫E
mΠ0

k,E𝝓
TdΩ =

∫E
m𝝓TdΩ. (56)

Similar to the traditional VEM, we can defining the𝚷0
k∗ to be the matrix of Π0

k,E on the basis of m and𝚷0
k being related to

the basis of 𝝓T

Π0
k,E𝝓

T = 𝝓T𝚷0
k = mT𝚷0

k∗, (57)

then Equation (56) becomes

∫E
mmTdΩ𝚷0

k∗ = ∫E
m𝝓TdΩ, (58)

or in the matrix form

H𝚷0
k∗ = 𝚽, (59)

where

H ∶=
∫E

mmTdΩ, (60)

𝚽 ∶=
∫E

m𝝓TdΩ. (61)

By using the triangular partition the matrix H can be calculated numerically. Once we compute the matrix𝚽, we can
further calculate the L2 projection matrix 𝚷0

k∗, thereby calculating I2 and the L2 projection matrix 𝚷m. The relationship
is given as

I2 =
∫E

(
divNp)

𝝓
TdΩ =

∫E

(
divNp)

𝝓
T𝚷0

kdΩ =
∫E

(
divNp)mT

k dΩ𝚷0
k∗, (62)

and

B = I1 − I2. (63)

The basis function 𝝓 is not explicitly known inside the polygonal virtual element. In traditional VEM, the integral
terms within the element can be eliminated using the definition of degrees of freedom. This also means that the matrix
𝚽 in Equation (61) as well as the matrix B in Equation (50) is not computable in the current function space.
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10 of 22 XU et al.

Given a polygonal element

Eq.(32)Calculate matrices        and

Calculate matrix 

Calculate matrix 

Calculate      projection matrix

Calculate      projection matrix

Eq.(33)

Eq.(49)

Eq.(50)

Eq.(48)

F I G U R E 3 Flowchart for calculating the L2 projection matrix 𝚷m for k = 1 and k = 2.

However, we can consider the following enlarged enhanced virtual element space56

̃k(E) ∶=
{

v ∈ 1(E) ∶ v|
𝜕E ∈ Bk(𝜕E),Δv ∈ Pk(E)

}
. (64)

and we obtain

∫E
Π0

kvp dΩ =
∫E
Π∇k vp dΩ, ∀p ∈∗

k−1 ∪
∗
k. (65)

As demonstrated in Reference 56, for k = 1 and k = 2, we deduct

𝚷0
k = 𝚷

∇
k , 𝚷0

k∗ = 𝚷
∇
k∗, 𝚷0

k = D𝚷0
k∗ (66)

In this work, only the first and second-order VEM (k = 1 and k = 2) is used for the elastoplastic problem. Thus
Equation (66) can be used and the L2 projection can be computed lastly. Using the relationship given in Equation (66),
the matrix I2 follows as

I2 =
∫E

(
divNp)mT

k dΩ𝚷∇k∗, (67)

where𝚷∇k∗ is the H1 projection (Ritz projection) matrix given in Equation (33). Substituting Equations (67) into (63) yields
the L2 projection matrix 𝚷m.

The flowchart for calculating the L2 projection matrix 𝚷m for k = 1 and k = 2 is provided in Figure 3.
Once the L2 projection matrix 𝚷m is obtained, we can directly approximate the gradient of the variable, which
is expressed as

∇u ≈ 𝚷0
l,E∇u =

(
Np)T𝚷mũ, (68)

where Np is given in Equation (40), u is any scalar field.

4 STABILIZATION-FREE VIRTUAL ELEMENT FORMULATION FOR
ELASTOPLASTIC PROBLEM

The main objective of this work is to extend the stabilization-free VEM (SFVEM) to elastoplastic problems. In
Section 3, we have deduced the matrix form of the L2 projection operator for the gradient of any scalar field u
(as well as v). In this paper, we use the scalar field gradient approximation to construct the vector field gradient
approximation directly.
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XU et al. 11 of 22

4.1 Tangent stiffness matrix

When dealing with elastoplastic problems applying the return-mapping algorithm, one has to compute the total strain
from the equilibrium equation and then use the elastic trial strain as a starting point for the return mapping, see Section 2.
Using the Voigt notation, the strain can be computed from the element unknown ũ and ṽ

�̂� ∶=
⎧
⎪
⎨
⎪
⎩

𝜀11

𝜀22

2𝜀12

⎫
⎪
⎬
⎪
⎭

=
⎡
⎢
⎢
⎢
⎣

1 0
0 0
0 1

⎤
⎥
⎥
⎥
⎦

{
𝜕u
𝜕x
𝜕u
𝜕y

}

+
⎡
⎢
⎢
⎢
⎣

0 0
0 1
1 0

⎤
⎥
⎥
⎥
⎦

{
𝜕v
𝜕x
𝜕v
𝜕y

}

= A1
(

Np)T𝚷mũ + A2
(

Np)T𝚷mṽ = ANT
p𝚷m

{
ũ
ṽ

}

,

(69)

where

A1 =
⎡
⎢
⎢
⎢
⎣

1 0
0 0
0 1

⎤
⎥
⎥
⎥
⎦

,A2 =
⎡
⎢
⎢
⎢
⎣

0 0
0 1
1 0

⎤
⎥
⎥
⎥
⎦

,A =
[

A1 A2

]

, (70)

and

NT
p =

[(
Np)T

(
Np)T

]

, 𝚷m =

[
𝚷m

𝚷m

]

. (71)

As discussed in the previous section, elastoplasticity is a history-dependent nonlinear continuous solid mechanical
problem. Considering the increment formulation and the strain given in Equation (69), the linearization of the virtual
work is obtained from

Δ ∶=
∫E
�̂�(Δuh)Talg

�̂�(𝛿vh)dΩ (72)

where ̂
alg

is the matrix form consistent or algorithmic material tangent (see appendix), which can be determined by the
generalized Clark derivative of the nonlinear stress-strain operator 𝔗k(𝜺k) as

f ⩽ 0 ∶ alg = ; (73)

f > 0 ∶ alg =  − 4𝜇2N ⊗ N
2𝜇 + 2

3
H

− 4𝜇2
�̂�

||𝜼tr
k ||
(Idev −N ⊗ N), (74)

where the plastic consistency parameter �̂� as well as the hardening variable and the effective plastic strain can be
calculated based on the current stress and strain state. The specific derivation process can be found in the appendix.

Substituting Equations (69) into (72) yields

Δ =
{

ũ ṽ
}

Kt

{
ũ
ṽ

}

(75)

with the tangent matrix in the semi-smooth Newton method can be deduced as

Kt =
∫E
𝚷T

mNpAT
̂

alg
ANT

p𝚷mdΩ

= 𝚷T
m
∫E

NpAT
̂

alg
ANT

p dΩ𝚷m.

(76)
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12 of 22 XU et al.

The integral in Equation (76) can be calculated by partitioning E into a set of triangles 𝒯n (as shown in Figure 2) and
adopting a Gauss quadrature rule.

The internal force has the form

F = 𝚷T
m
∫E

NpAT
�̂�kdΩ. (77)

4.2 Calculation of stress

In elastoplastic problems, the calculation and updating of stress (strain) is an important part of elastoplastic analysis.
Since stress (strain) needs to be calculated at the integration points, considering Equation (69), we have

𝜺
tr
k = ANp𝚷m ̃U, (78)

where ̃U is the displacement vector and the Voigt notation is assumed for strain. Then the trial stress field can be
calculated by

𝝈
tr
k = (K1 ⊗ 1 + 2𝜇Idev) ∶

(
𝜺

tr
k − 𝜺

p
k

)
. (79)

If the yield function f > 0, the trial stress has to be corrected by

𝝈k+1 = 𝝈tr
k − 2𝜇�̂�N. (80)

5 NUMERICAL EXAMPLES

This section presents some 2D examples to illustrate the applicability and efficiency of the proposed stabilization-free
virtual element method (SFVEM) in solving elastoplastic problems. All computations are performed with self-written
Matlab codes. The analysis employs the von Mises yield criterion along with the combined hardening model. Plane strain
conditions are assumed. In each example, the polygonal elements are either generated using PolyMesher,57 or are derived
from triangular meshes with subsequent conversion. Two parameters, denoted as k and l, describe the order of the virtual
element method and the polynomial order in the L2 projection operator, respectively.

5.1 Cook’s membrane problem

In this example, the standard Cook’s membrane problem is considered. The geometric model, dimensions and bound-
ary conditions are depicted in Figure 13. The structure is clamped at the left side and subjected to a constant distributed
vertical load qy = 4 on the right side (as shown in Figure 4). The relevant length specifications are L = 48, H1 = 44,
and H2 = 16. Perfect plasticity is assumed for this example with the material parameters given as E = 10000, 𝜈 = 0.2,
and 𝜎

0
Y = 10.

Two different meshes are selected including a regular mesh and a polygonal mesh (generated by PolyMesher). To
compare the performance of the proposed stabilization-free virtual element method, a convergence study is performed
for different meshes. By defining the parameter N which corresponds to the number of divisions for each edge, we define
four different meshes for regular and polygonal elements. In this example, N = 2, 3, 4, 5 is selected leading to 2N × 2N

elements. The maximum vertical displacement uy in the y direction of the upper right node is used as a measure in the
convergence study.

The selection of parameter l which depends on the number of vertices of element E follows from the relationship
between k, l, and n given in the previous section, see Equations (36) and (37). In order to investigate the correct rank of
the element matrix, we compare different l for different order k of SFVEM. In this example, we choose l = 1, 2 for k = 1
and l = 2, 3 for k = 2. The finite element method with Q1 (linear) element and Q2 (second-order serendipity) element is
selected for comparison.
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XU et al. 13 of 22

F I G U R E 4 Initial configuration of Cook’s membrane problem.

T A B L E 1 Maximum vertical displacement uy for different element division N for regular elements (obtained by FEM and SFVEM).

FEM SFVEM

N Q1 Q2 k = 1, l = 1 k = 1, l = 2 k = 2, l = 2 k = 2, l = 3

2 0.11905 0.17660 0.12008 0.11837 0.18105 0.17857

3 0.15331 0.18273 0.15338 0.15302 0.18469 0.18351

4 0.17323 0.18498 0.17323 0.17317 0.18595 0.18542

5 0.18160 0.18631 0.18159 0.18159 0.18681 0.18651

T A B L E 2 Max vertical displacement uy for different element division N for polygon elements (obtained by SFVEM).

N k = 1, l = 1 k = 1, l = 2 k = 2, l = 2 k = 2, l = 3

2 0.12762 0.12307 0.18150 0.17943

3 0.14885 0.14565 0.18480 0.18312

4 0.17163 0.17036 0.18628 0.18539

5 0.18097 0.18046 0.18691 0.18651

The values of uy for different meshes and different methods are given in Tables 1 and 2 for regular and polygonal
elements, respectively. Besides, the associated convergence studies for different meshes are depicted in Figures 5 and 6.
For regular and polygonal meshes, the solutions obtained by SFVEM agree well with the solutions obtained by FEM. This
also indirectly shows that SFVEM is an effective extension of FEM to the polygonal elements.

We note that for k = 1, locking occurs when using SFVEM which is due to plastic incompressibility and well known
for Q1 FEM element. This could be improved by the use of a mixed formulation, see Reference 25 for incompressibility.
For the higher-order SFFEM (k = 2), we compared it with the second-order FEM and found that the results were very
close. This phenomenon means that locking can be significantly improved by increasing the order of the elements (the
locking is not as evident as the first-order SFVEM).

The deformed shape and contour plot of the von Mises stresses for different meshes are shown in Figures 7 and 8.

5.2 2D thick cylinder under internal pressure

In this example, a 2D thick-walled cylinder subjected to internal pressure P is considered. The geometrical model, dimen-
sions and boundary conditions are given in Figure 9. The internal diameter is a = 200 and the outer diameter is b = 400.
The inner pressure is selected as P = 20. The material parameters are E = 10000, 𝜈 = 0.2 and perfect plasticity is assumed.
The SFVEM with polygonal and regular meshes are used, furthermore, FEM is selected for comparison.
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14 of 22 XU et al.

F I G U R E 5 Max vertical displacement uy for different element division N for regular elements.

F I G U R E 6 Max vertical displacement uy for different element division N for polygon elements.

1

2

3

4

5

6

7

8

9

10

F I G U R E 7 Deformed shape and contour plot of the von Mises stresses for different meshes with regular elements (obtained by SFVEM
with k = 2, l = 3).

Since this is in reality a 1D axisymmetric problem, an analytical form of its displacement and stress can be deduced.
The plastic zone extends from r = a to r = c. So the stresses 𝜎r and 𝜎

𝜃
in the elastic zone c < r < b are given by

𝜎r =
b2

b2 − c2

(

1 − b2

r2

)

ps, c < r < b, (81)

𝜎
𝜃
= c2

b2 − c2

(

1 + b2

r2

)

ps, c < r < b, (82)
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XU et al. 15 of 22

1

2

3

4

5

6

7

8

9

10

F I G U R E 8 Deformed shape and contour plot of the von Mises stresses for different meshes with polygon elements (obtained by
SFVEM with k = 2, l = 3).

F I G U R E 9 Geometry and its dimensions of the 2D thick-walled cylinder.

where

ps =
(

1 − c2

b2

)
𝜎

0
Y
√

3
, (83)

and the plastic zone can be determined by

p = 2
3
𝜎

0
Y

[

ln c
a
+ 1

2

(

1 − c2

b2

)]

. (84)

The stresses in the plastic zone have the form

𝜎r = −P + 2
√

3
𝜎

0
Y ln r

a
, a < r < c, (85)

𝜎
𝜃
= −P + 2

√
3
𝜎

0
Y

(

1 + ln r
a

)

, a < r < c. (86)

We assume that the material has different yield stresses 𝜎0
Y = 28 and 𝜎

0
Y = 30. For discretizations with k = 1 and k = 2,

the hoop stresses 𝜎
𝜃

along radius for different yield stresses 𝜎

0
Y obtained by SFVEM and FEM are given in Figures 10

and 11, respectively (polygonal elements are used in SFVEM). The hoop stresses 𝜎
𝜃

obtained by SFVEM coincide well
with the solution obtained by FEM and the analytical solutions. We observe a jump in the stress calculation of the finite
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16 of 22 XU et al.

F I G U R E 10 Distribution of hoop stresses 𝜎
𝜃

along radius for different yield stresses 𝜎0
Y (first order).

F I G U R E 11 Distribution of hoop stresses 𝜎
𝜃

along radius for different yield stresses 𝜎0
Y (second order).

T A B L E 3 Max vertical displacement uy for different element division N for polygon elements.

Analytical FEM, Q1 FEM, Q2 SFVEM, k = 1, l = 2 SFVEM, k = 2, l = 3

𝜎

0
Y = 28 25.007 24.429 24.794 24.583 24.563

𝜎

0
Y = 30 25.303 24.619 25.059 24.693 24.855

element method at r = a but there is no such phenomenon in SFVEM for the first-order method (k = 1). This may be due
to inaccurate interpolation of nodal stresses.

The maximum values of 𝜎y are compared and listed in Table 3 for different methods. It can be seen that the stress
results obtained by SFVEM are in good agreement with the reference solutions as given in Table 3.

The contour plots of the von Mises stress for different yield stresses obtained by SFVEM are shown in Figure 12.

5.3 Elastoplastic problem with loading-unloading

An angle plate is subjected to a time-varying load cycle. The geometric model, dimensions and boundary conditions
are provided in Figure 13. Von Mises plasticity with kinematic hardening is considered with the material parameters
E = 206900, 𝜈 = 0.29, 𝜎0

Y = 450, and H = 20000. The time-varying traction force F(t) depicted in Figure 14 is applied on
the top of the model. The maximum load is Fmax = 200.

SFVEM and FEM are selected for the numerical simulation. The parameters used in SFVEM are chosen as l = 2 for
k = 1 and l = 3 for k = 2. In fact, l = 1 for k = 1 and l = 2 for k = 2 are also acceptable in this example since the maximum
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21
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23

24
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26

27

28
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30

20

21

22

23

24

25

26

F I G U R E 12 Contour plot of the von Mises stresses for different yield stress 𝜎0
Y with polygon elements (obtained by SFVEM with

k = 2, l = 3).

F I G U R E 13 Geometry and its dimensions of the 2D plane.

F I G U R E 14 History of the traction force.

number of nodes in an element is n = 6. The polygonal mesh is constructed from triangular elements. The contour plots
of von Mises stress obtained by SFVEM and FEM methods are given in Figures 15 and 16 for t = 1 and t = 4, respectively.

We further study the relationship between the loading scale 0 ⩽ 𝜏 ⩽ 4 and the work of the external force (hysteresis
phenomenon of plastic materials). For different methods and different parameters, the relation between 𝜏 and the work
of the external force is depicted in Figure 17. We note that there are some differences in the results obtained by the finite
element method of first and second order, which is related to the locking of Q1 elements. The results obtained by SFVEM
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VEM FEM

F I G U R E 15 Contour plot of von Mises stress with the deformed shape at t = 1.0, Q1 elements are used in FEM and the parameters in
VEM are selected as k = 1 and l = 2.

0
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100
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200

250

300

350

VEM FEM

F I G U R E 16 Contour plot of von Mises stress with the deformed shape at t = 4.0, Q1 elements are used in FEM and the parameters in
VEM are selected as k = 1 and l = 2.

F I G U R E 17 The hysteresis curve for different methods.
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XU et al. 19 of 22

T A B L E 4 Values of work obtained by different methods.

t FEM, Q1 FEM, Q2 SFVEM k = 1, l = 2 SFVEM k = 2, l = 3

1 92.80 83.52 82.68 83.79

2 37.79 28.27 27.56 28.46

3 −92.34 −83.26 −82.43 −83.52

4 −37.33 −28.01 −27.30 −28.19

attach well with the results obtained by second-order FEM, even for first-order SFVEM. This underlines for this example
that SFVEM is less prone to locking for k = 1.

The values obtained by different methods at t = 1, t = 2, t = 3, and t = 4 are displayed in Table 4. Compared to the Q1
finite element, the results of SFVEM (k = 1) are more consistent with those of the second-order finite element method.

6 CONCLUSION

In this paper, we extend the application of the stabilization-free virtual element method (SFVEM) to 2D elastoplastic
problems. Higher-order L2 projections of the enhanced gradient denoted as𝚷m are introduced alongside the𝚷∇ projector
used in conventional VEM. Under appropriate selection of the enhanced polynomial space, a coercive bilinear form can
be established which results in a stiffness matrix that has the correct rank and encompasses the physical zero-energy
modes. In the calculation process of SFVEM, no additional stability terms are required, making the method very similar
to traditional finite element methods. Based on the framework mentioned above, we provide a stabilization-free virtual
element method for solving classical elastoplastic mechanical problems which is used for the computational analysis of
some classical problems. Both first-order and second-order SFVEMs perform well in this nonlinear elastoplastic problem.
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APPENDIX A. TIME DISCRETIZATION SCHEME OF THE CONSTITUTIVE PROBLEM

We have discussed the elastoplastic equation in Section 2. Since constitutive relations and evolution of plastic variables
are in the form of rates, the (pseudo) time step should be selected. Consider a discretization of time interval [0 = t0 <

t1 < · · · < tk < · · · < tN = tmax] and denote 𝝈k ∶= 𝝈(tk), 𝜺k ∶= 𝜺(tk), sk ∶= s(tk), qk ∶= q(tk), 𝜼k ∶= 𝜼(tk), the kth step of the
incremental constitutive problem discretized by the implicit backward scheme based on the Karush-Kuhn-Tucker (KKT)
condition. In this work, only linear isotropic and kinematic hardening are considered, so the process of nonlinear analysis
is simplified.

Besides, we can define the nonlinear (piecewise linear) stress-strain operator 𝔗k at time tk as

𝝈k = 𝔗k(𝜺k). (A1)

In general, the stress-strain operator𝔗k is implicit and the elastic predictor–plastic corrector method can be applied. The
idea of this procedure is to freeze the plastic variables at the beginning of a time step from tk to tk+1:

str
k+1 = sk,

(

𝜺
p
k+1

)tr
= 𝜺p

k, 𝜶
tr
k+1 = 𝜶k. (A2)

where (•)tr denotes the trial status.
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Then within the elastic prediction, we should check whether the trial stress is admissible or not. If f ≤ 0, the trial
stress is within the elastic domain, then

(

𝜺
p
k+1

)tr
= 𝜺p

k, 𝜶
tr
k+1 = 𝜶k. (A3)

If the trial stress is outside the elastic domain, that is, f > 0, the plastic correction step needs to be carried out and the
trial stress has the form as

sk+1 = str
k − 2𝜇Δ𝜺p = str

k − 2𝜇�̂�N, (A4)

where �̂� = Δt𝜆 and N = 𝜼tr
k ∕||𝜼

tr
k ||. Rather, the stress itself can be updated by

𝝈k+1 = 𝝈k + Δ𝝈 (A5)

where Δ𝝈 = Δ𝜺 − 2𝜇�̂�N. The plastic variables are also updated with the stress according to the flow rule as

qk+1 = qtr
k +

2
3

H�̂�N, �̂�k+1 = �̂�k +
√

2
3
�̂� (A6)

As given in References 58,59, the nonlinear stress-strain operator 𝔗k is almost everywhere differentiable and can define
a function

𝔗0
k ∶ R

3×3
sym → 

(
R

3×3
sym ×R

3×3
sym
)

(A7)

representing a generalized Clark derivative of 𝔗k. In elastic cases, the stress-strain operator and its derivative have the
form as

𝔗k(𝜺k) =  ∶ 𝜺k, 𝔗0
k(𝜺k) = , (A8)

where the elastic constitutive tensor  is given in Equation (7). In the plastic cases, we have

𝔗0
k(𝜺k) = alg =  − 4𝜇2N ⊗ N

2𝜇 + 2
3

H
− 4𝜇2

�̂�

||𝜼tr
k ||
(Idev −N ⊗ N). (A9)

Besides, the stress-strain operator has the form as

𝔗k(𝜺k) = 𝝈tr
k − 2𝜇�̂�N. (A10)
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